Dark $f(\mathcal{R},\varphi,\chi)$ universe with Noether symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 513-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Noether symmetry approach, we investigate $f(\mathcal{R},\varphi,\chi)$ theories of gravity, where $\mathcal{R}$ is the scalar curvature, $\varphi$ is the scalar field, and $\chi$ is the kinetic term of $\varphi$. Based on the Lagrangian for $f(\mathcal{R},\varphi,\chi)$ gravity, we obtain the determining equations. We consider $f(\mathcal{R},\varphi,\chi)$ models of a flat Friedmann–Robertson–Walker universe. Using the obtained solutions, we find conserved quantities. In the framework of this scenario, the continuity equation is extremely important for analyzing the energy density and pressure. Using the first integral of motion, we present a graphical analysis of the energy density, pressure component, and parameter of the equation of state. The negativity of the pressure observed in the considered cases in fact suggests that this theory can describe a Noether universe with dark matter.
Keywords: conserved quantity, dark matter, Noether symmetry.
@article{TMF_2020_205_3_a9,
     author = {M. F. Shamir and A. Malik and M. Ahmad},
     title = {Dark $f(\mathcal{R},\varphi,\chi)$ universe with {Noether} symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {513--528},
     year = {2020},
     volume = {205},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a9/}
}
TY  - JOUR
AU  - M. F. Shamir
AU  - A. Malik
AU  - M. Ahmad
TI  - Dark $f(\mathcal{R},\varphi,\chi)$ universe with Noether symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 513
EP  - 528
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a9/
LA  - ru
ID  - TMF_2020_205_3_a9
ER  - 
%0 Journal Article
%A M. F. Shamir
%A A. Malik
%A M. Ahmad
%T Dark $f(\mathcal{R},\varphi,\chi)$ universe with Noether symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 513-528
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a9/
%G ru
%F TMF_2020_205_3_a9
M. F. Shamir; A. Malik; M. Ahmad. Dark $f(\mathcal{R},\varphi,\chi)$ universe with Noether symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 513-528. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a9/

[1] A. G. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from Supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009–1038, arXiv: astro-ph/9805201 | DOI

[2] S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift Supernovae”, Astrophys. J., 517:2 (1999), 565–586, arXiv: astro-ph/9812133 | DOI

[3] M. Tegmark, M. A. Strauss, M. R. Blanton et al., “Cosmological parameters from SDSS and WMAP”, Phys. Rev. D, 69:10 (2004), 103501, 26 pp. | DOI

[4] U. Seljak, A. Makarov, P. McDonald et al., “Cosmological parameter analysis including SDSS Ly$\alpha$ forest and galaxy bias: constraints on the primordial spectrum of fluctuations, neutrino mass, and dark energy”, Phys. Rev. D, 71:10 (2005), 103515, 20 pp., arXiv: astro-ph/0407372 | DOI

[5] D. J. Eisenstein, I. Zehavi, D. W. Hogg et al., “Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies”, Astrophys. J., 633:2 (2005), 560–574, arXiv: astro-ph/0501171 | DOI

[6] S. W. Allen, R. W. Schmidt, H. Ebeling, A. C. Fabian, L. van Speybroeck, “Constraints on dark energy from Chandra observations of the largest relaxed galaxy clusters”, Mon. Not. R. Astron. Soc., 353:2 (2004), 457–467, arXiv: astro-ph/0405340 | DOI

[7] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144, arXiv: 1011.0544 | DOI | MR

[8] S. Nojiri, S. D. Odintsov, “Modified Gauss–Bonnet theory as gravitational alternative for dark energy”, Phys. Lett. B, 631:1–2 (2005), 1–6, arXiv: hep-th/0508049 | DOI | MR

[9] K. Bamba, S. Capozziello, S. Nojiri, S. D. Odintsov, “Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests”, Astrophys. Space Sci., 342 (2012), 155–228 | DOI

[10] K. Bamba, S. D. Odintsov, “Inflationary cosmology in modified gravity theories”, Symmetry, 7:1 (2015), 220–240 | DOI | MR

[11] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and late-time evolution”, Phys. Rep., 692 (2017), 1–104, arXiv: 1705.11098 | DOI | MR

[12] S. Nojiri, S. D. Odintsov, “Dark energy, inflation and dark matter from modified $F(R)$ gravity”, Problemy sovremennoi teoreticheskoi fiziki. K 60-letiyu I. L. Bukhbindera, Izd-vo Tomsk. gos. ped. un-ta, Tomsk, 2008, 266–285, arXiv: 0807.0685

[13] S. Nojiri, S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy”, Internat. J. Geom. Meth. Modern Phys., 4:1 (2007), 115–145 | DOI

[14] S. Bahamonde, C. G. Böhmer, F. S. N. Lobo, D. Sáez-Gómez, “Generalized $f(R,\phi,X)$ gravity and the late-time cosmic acceleration”, Universe, 1:2 (2015), 186–198, arXiv: 1506.07728 | DOI

[15] S. D. Odintsov, V. K. Oikonomou, “Viable inflation in scalar-Gauss–Bonnet gravity and reconstruction from observational indices”, Phys. Rev. D, 98:4 (2018), 044039, 12 pp., arXiv: 1808.05045 | DOI | MR

[16] R. Myrzakulov, L. Sebastiani, S. Vagnozzi, “Inflation in $f(R,\phi)$-theories and mimetic gravity scenario”, Eur. Phys. J. C, 75 (2015), 444, 11 pp., arXiv: 1504.07984 | DOI

[17] M. F. Shamir, A. Malik, “Behavior of anisotropic compact stars in $f(R,\phi)$ gravity”, Commun. Theor. Phys., 71:5 (2019), 599–609 | DOI | MR

[18] M. F. Shamir, A. Malik, “Investigating $f(R,\phi)$ cosmology with equation of state”, Canadian J. Phys., 97:7 (2019), 752–760 | DOI

[19] H. Farajollahi, M. Setare, F. Milani, F. Tayebi, “Cosmic dynamics in $F(R,\phi)$ gravity”, Gen. Rel. Gravit., 43:6 (2011), 1657–1699, arXiv: 1005.2026 | DOI | MR

[20] D. D. Canko, I. D. Gialamas, G. P. Kodaxis, “A simple $F(\mathcal R,\phi)$ deformation of Starobinsky inflationary model”, Eur. Phys. J. C, 80:5 (2020), 458, 13 pp., arXiv: 1901.06296 | DOI

[21] S. Capozziello, A. Stabile, A. Troisi, “Spherically symmetric solutions in $f(R)$ gravity via the Noether symmetry approach”, Class. Quantum Grav., 24:8 (2007), 2153–2166, arXiv: gr-qc/0703067 | DOI | MR

[22] S. Capozziello, A. Stabile, A. Troisi, “Spherical symmetry in $f(R)$-gravity”, Class. Quantum Grav., 25:8 (2007), 085004, 14 pp., arXiv: 0709.0891 | DOI | MR

[23] S. Capozziello, M. Laurentis, S. D. Odintsov, “Noether symmetry approach in Gauss–Bonnet cosmology”, Modern Phys. Lett. A, 29:30 (2014), 1450164, 13 pp., arXiv: 1406.5652 | DOI | MR

[24] M. F. Shamir, M. Ahmad, “Noether symmetry approach in $f(\mathcal G,T)$ gravity”, Eur. Phys. J. C, 77:1 (2017), 55, 6 pp. | DOI

[25] D. Momeni, R. Myrzakulov, E. Güdekli, “Cosmological viable mimetic $f(R)$ and $f(R,T)$ theories via Noether symmetry”, Internat. J. Geom. Methods Modern Phys., 12:10 (2015), 1550101, 22 pp., arXiv: 1502.00977 | DOI | MR

[26] M. F. Shamir, F. Kanwal, “Noether symmetry analysis of anisotropic universe in modified gravity”, Eur. Phys. J. C, 77:5 (2017), 286, 8 pp. | DOI | MR

[27] M. F. Shamir, M. Ahmad, “Noether symmetry approach in $f(\mathcal{G},T)$ gravity”, Eur. Phys. J. C, 77 (2017), 55, 6 pp., arXiv: 1611.07338 | DOI

[28] S. Bahamonde, K. Bamba, U. Camci, “New exact spherically symmetric solutions in $f(R,\phi,X)$ gravity by Noether's symmetry approach”, J. Cosmol. Astropart. Phys., 2019:2 (2019), 016, 28 pp. | DOI | MR

[29] M. F. Shamir, “$f(\mathcal R,\varphi,\chi)$ cosmology with Noether symmetry”, Eur. Phys. J. C, 80:2 (2020), 115, 9 pp. | DOI

[30] H. R. Fazlollahi, “$F(R)$ cosmology via Noether symmetry and $\Lambda$-Chaplygin Gas like model”, Phys. Lett. B, 781 (2018), 542–546, arXiv: 1804.02971 | DOI

[31] J. Hogan, “Unseen Universe: welcome to the dark side”, Nature, 448:7151 (2007), 240–245 | DOI

[32] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, “$k$-essence $f(R)$ gravity inflation”, Nucl. Phys. B, 941 (2019), 11–27, arXiv: 1902.03669 | DOI | MR