Mutual transition of Andreev and Majorana bound states in a superconducting gap
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 484-501 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Bogoliubov–de Gennes Hamiltonian, we analytically study two models with superconducting order, the p-wave model with an impurity potential and the s-wave nanowire model with superconductivity induced by the proximity effect with an impurity potential in a Zeeman field with a spin–orbit interaction. Using the Dyson equation, we study conditions for the emergence of Andreev bound states with energies close to the boundary of the superconducting gap and the possibility for these states to pass into Majorana-like bound states. We prove that in the topological phase (in the p-wave case also in the trivial phase) for both models, the Andreev bound states with energy close to the boundary of the superconducting gap can exist, but although their emergence in the p-wave model is due to the appearance of a (nonmagnetic) impurity, they appear in the s-wave model only as a result of a local perturbation of the Zeeman field. For both models, the transition of the Andreev bound states into the Majorana states (and back) is impossible in the topological phase, which is explained by the topological protection of the Majorana-like bound states in the topological phase.
Keywords: Bogoliubov–de Gennes Hamiltonian, superconducting gap, Andreev bound state, Majorana bound state.
@article{TMF_2020_205_3_a7,
     author = {Yu. P. Chuburin and T. S. Tinyukova},
     title = {Mutual transition of {Andreev} and {Majorana} bound states in a~superconducting gap},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {484--501},
     year = {2020},
     volume = {205},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a7/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
AU  - T. S. Tinyukova
TI  - Mutual transition of Andreev and Majorana bound states in a superconducting gap
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 484
EP  - 501
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a7/
LA  - ru
ID  - TMF_2020_205_3_a7
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%A T. S. Tinyukova
%T Mutual transition of Andreev and Majorana bound states in a superconducting gap
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 484-501
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a7/
%G ru
%F TMF_2020_205_3_a7
Yu. P. Chuburin; T. S. Tinyukova. Mutual transition of Andreev and Majorana bound states in a superconducting gap. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 484-501. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a7/

[1] S. R. Elliot, M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics”, Rev. Modern Phys., 87:1 (2015), 137–163, arXiv: 1403.4976 | DOI | MR

[2] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Prog. Phys., 75:7 (2012), 076501, 36 pp., arXiv: 1202.1293 | DOI

[3] M. Sato, S. Fujimoto, “Majorana fermions and topology in superconductors”, J. Phys. Soc. Japan, 85:7 (2016), 072001, 31 pp., arXiv: 1601.02726 | DOI

[4] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus, Y. Oreg, “Majorana zero modes in superconductor–semiconductor heterostructures”, Nature Rev. Mater., 3:5 (2018), 52–68, arXiv: 1707.04899 | DOI

[5] F. von Oppen, Y. Peng, F. Pientka, “Topological superconducting phases in one dimension”, Topological Aspects of Condensed Matter Physics (Ècole de Physique Les Houches, 4–29 August, 2014), Lecture Notes of the Les Houches Summer School, 103, eds. C. Chamon, M. O. Goerbig, R. Moessner, L. F. Cugliandolo, Oxford Univ. Press, Oxford, 2017, 387–449 | DOI

[6] K. Sengupta, I. Žutic, H.-J. Kwon, V. M. Yakovenko, S. D. Sarma, “Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors”, Phys. Rev. B, 63:14 (2001), 144531, 6 pp., arXiv: cond-mat/0010206 | DOI

[7] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, L. P. Kouwenhoven, “Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices”, Science, 336:6084 (2012), 1003–1007 | DOI

[8] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, “Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions”, Nature Phys., 8:12 (2012), 887–895, arXiv: 1205.7073 | DOI

[9] M. T. Deng, S. Vaitiek.{e}nas, E. B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygård, P. Krogstrup, C. M. Marcus, “Majorana bound state in a coupled quantum-dot hybrid-nanowire system”, Science, 354:6319 (2016), 1557–1562, arXiv: 1612.07989 | DOI

[10] L. P. Rokhinson, X. Liu, J. K. Furdyna, “The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles”, Nature Phys., 8:11 (2012), 795–799, arXiv: 1204.4212 | DOI

[11] C.-X. Liu, J. D. Sau, T. D. Stanescu, S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot–nanowire–superconductor hybrid structures: trivial versus topological zero-bias conductance peaks”, Phys. Rev. B, 96:7 (2017), 075161, 29 pp., arXiv: 1705.02035 | DOI

[12] C. Moore, C. Zeng, T. D. Stanescu, S. Tewari, “Quantized zero-bias conductance plateau in semiconductor–superconductor heterostructures without topological Majorana zero modes”, Phys. Rev. B, 98:15 (2018), 155314, 6 pp., arXiv: 1804.03164 | DOI

[13] A. Vuik, B. Nijholt, A. R. Akhmerov, M. Wimmer, “Reproducing topological properties with quasi-Majorana states”, SciPost Phys., 7 (24), 061, arXiv: 1806.02801 | DOI

[14] C.-K. Chiu, S. D. Sarma, “Fractional Josephson effect with and without Majorana zero modes”, Phys. Rev. B, 99:3 (2019), 035312, 13 pp. | DOI

[15] T. S. Tinyukova, Yu. P. Chuburin, “Rol maioranopodobnykh lokalizovannykh sostoyanii v andreevskom otrazhenii i effekte Dzhozefsona v sluchae topologicheskogo izolyatora”, TMF, 202:1 (2020), 81–97 | DOI | DOI

[16] Yu. P. Chuburin, “Existence of Majorana bound states near impurities in the case of a small superconducting gap”, Phys. E, 89 (2017), 130–133 | DOI

[17] Yu. P. Chuburin, “Suschestvovanie maioranovskikh lokalizovannykh sostoyanii v sverkhprovodyaschei nanoprovoloke vblizi primesi”, TMF, 197:2 (2018), 279–289 | DOI | DOI

[18] C. W. J. Beenakker, “Random-matrix theory of Majorana fermions and topological superconductors”, Rev. Modern Phys., 87:3 (2015), 1037–1066 | DOI | MR

[19] R. Aguado, “Majorana quasiparticles in condensed matter”, Riv. Nuovo Cimento, 40:11 (2017), 523–593, arXiv: 1711.00011 | DOI

[20] T. S. Tinyukova, “Maioranovskie sostoyaniya vblizi primesi v $p$-volnovoi sverkhprovodyaschei nanoprovoloke”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 28:2 (2018), 222–230 | DOI | MR

[21] Yu. P. Chuburin, “O malykh vozmuscheniyakh operatora Shredingera s periodicheskim potentsialom”, TMF, 110 (1997), 443–453 | DOI | DOI | MR | Zbl

[22] Yu. P. Chuburin, “On levels of a weakly perturbed periodic Schrödinger operator”, Commun. Math. Phys., 249:3 (2004), 497–510 | DOI | MR

[23] S. D. Sarma, A. Nag, J. D. Sau, “How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires”, Phys. Rev. B, 94:3 (2016), 035143, 17 pp. | DOI

[24] Yu. N. Demkov, V. N. Ostrovskii, Metod potentsialov nulevogo radiusa v atomnoi fizike, Izd-vo Leningr. un-ta, L., 1975

[25] S. K. Adhikari, M. Casas, A. Puente, A. Rigo, M. Fortes, M. A. Solis, M. de Llano, A. A. Valladares, O. Rojo, “Linear to quadratic crossover of Cooper-pair dispersion relation”, Phys. C, 351:4 (2001), 341–348, arXiv: cond-mat/0008478 | DOI

[26] M. Sato, Y. Ando, “Topological superconductors: a review”, Rep. Prog. Phys., 80:7 (2017), 076501, 42 pp. | DOI | MR

[27] S. Datta, Kvantovyi transport: ot atoma k tranzistoru, NITs “Regulyarnaya i khaoticheskaya dinamika”, In-t kompyuternykh issledovanii, M.–Izhevsk, 2009

[28] J. Viljas, 2011, \par {\fontsize{8.5}{8.5pt}\selectfont} https://www.researchgate.net/publication/242099017_Molecular_electronics_a_brief_introduction

[29] Yu. P. Chuburin, T. S. Tinyukova, “The emergence of bound states in a superconducting gap at the topological insulator edge”, Phys. Lett. A, 384:27 (2020), 126694, 7 pp. | DOI | MR