Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 467-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the eigenvalue problem for the two-dimensional Hartree operator with a small nonlinearity coefficient. We find the asymptotic eigenvalues and asymptotic eigenfunctions near a local maximum of the eigenvalues in spectral clusters formed near the eigenvalues of the unperturbed operator.
Keywords: spectral cluster, WKB approximation, asymptotic eigenvalue, asymptotic eigenfunction, logarithmic singularity.
@article{TMF_2020_205_3_a6,
     author = {A. V. Pereskokov},
     title = {Semiclassical asymptotic spectrum of the~two-dimensional {Hartree} operator near a~local maximum of the~eigenvalues in a~spectral cluste},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {467--483},
     year = {2020},
     volume = {205},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a6/}
}
TY  - JOUR
AU  - A. V. Pereskokov
TI  - Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 467
EP  - 483
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a6/
LA  - ru
ID  - TMF_2020_205_3_a6
ER  - 
%0 Journal Article
%A A. V. Pereskokov
%T Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 467-483
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a6/
%G ru
%F TMF_2020_205_3_a6
A. V. Pereskokov. Semiclassical asymptotic spectrum of the two-dimensional Hartree operator near a local maximum of the eigenvalues in a spectral cluste. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 467-483. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a6/

[1] N. N. Bogolyubov, “Ob odnoi novoi forme adiabaticheskoi teorii vozmuschenii v zadache o vzaimodeistvii chastitsy s kvantovym polem”, Ukr. matem. zhurn., 2:2 (1950), 3–24

[2] L. P. Pitaevskii, “Kondensatsiya Boze–Einshteina v magnitnykh lovushkakh. Vvedenie v teoriyu”, UFN, 168:6 (1998), 641–653 | DOI | DOI

[3] S. A. Achmanov, R. V. Hocklov, A. P. Suchorukov, “Self-defocusing and self-modulation in nonlinear media”, Laserhandbuch, v. 2, eds. F. T. Arecchi, E. O. Schulz-Dubois, North-Holland, Amsterdam, 1972, 5–108

[4] A. S. Davydov, Solitony v molekulyarnykh sistemakh, Naukova dumka, Kiev, 1984 | DOI | MR

[5] V. P. Maslov, Kompleksnye markovskie tsepi i kontinualnyi integral Feimana, Nauka, M., 1976 | MR

[6] M. V. Karasev, V. P. Maslov, “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II. Operatornye unitarno-nelineinye uravneniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 13 (1979), 145–267 | DOI | MR | Zbl

[7] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra dvumernogo operatora Khartri vblizi verkhnikh granits spektralnykh klasterov”, TMF, 187:1 (2016), 74–87 | DOI | DOI | MR

[8] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | MR | Zbl

[9] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | MR | Zbl | Zbl

[10] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | DOI | MR | Zbl

[11] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[12] Dzh. N. Vatson, Teoriya besselevykh funktsii, IL, M., 1949 | MR | Zbl

[13] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra operatora tipa Khartri vblizi verkhnikh granits spektralnykh klasterov”, TMF, 178:1 (2014), 88–106 | DOI | DOI | MR | Zbl

[14] A. V. Pereskokov, “Kvaziklassicheskaya asimptotika spektra vblizi nizhnikh granits spektralnykh klasterov dlya operatora tipa Khartri”, Matem. zametki, 101:6 (2017), 894–910 | DOI | DOI | MR

[15] A. V. Pereskokov, “Asimptotika spektra operatora Khartri vblizi verkhnikh granits spektralnykh klasterov. Asimptoticheskie resheniya, lokalizovannye vblizi okruzhnosti”, TMF, 183:1 (2015), 78–89 | DOI | DOI | MR

[16] A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree type operator near upper boundaries of spectral clusters. Asymptotic solutions located near a circle”, J. Math. Sci. (N. Y.), 226:4 (2017), 517–530 | DOI | MR

[17] D. A. Vakhrameeva, A. V. Pereskokov, “Asimptotika spektra dvumernogo operatora tipa Khartri s kulonovskim potentsialom samodeistviya vblizi nizhnikh granits spektralnykh klasterov”, TMF, 199:3 (2019), 445–459 | DOI | DOI

[18] M. V. Karasev, A. V. Pereskokov, “Logarifmicheskie popravki v pravile kvantovaniya. Spektr polyarona”, TMF, 97:1 (1993), 78–93 | DOI | MR