Semiclassical asymptotic spectrum of the~two-dimensional Hartree operator near a~local maximum of the~eigenvalues in a~spectral cluste
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 467-483
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the eigenvalue problem for the two-dimensional Hartree operator with a small nonlinearity coefficient. We find the asymptotic eigenvalues and asymptotic eigenfunctions near a local maximum of the eigenvalues in spectral clusters formed near the eigenvalues of the unperturbed operator.
Keywords:
spectral cluster, WKB approximation, asymptotic eigenvalue,
asymptotic eigenfunction, logarithmic singularity.
@article{TMF_2020_205_3_a6,
author = {A. V. Pereskokov},
title = {Semiclassical asymptotic spectrum of the~two-dimensional {Hartree} operator near a~local maximum of the~eigenvalues in a~spectral cluste},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {467--483},
publisher = {mathdoc},
volume = {205},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a6/}
}
TY - JOUR AU - A. V. Pereskokov TI - Semiclassical asymptotic spectrum of the~two-dimensional Hartree operator near a~local maximum of the~eigenvalues in a~spectral cluste JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 467 EP - 483 VL - 205 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a6/ LA - ru ID - TMF_2020_205_3_a6 ER -
%0 Journal Article %A A. V. Pereskokov %T Semiclassical asymptotic spectrum of the~two-dimensional Hartree operator near a~local maximum of the~eigenvalues in a~spectral cluste %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 467-483 %V 205 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a6/ %G ru %F TMF_2020_205_3_a6
A. V. Pereskokov. Semiclassical asymptotic spectrum of the~two-dimensional Hartree operator near a~local maximum of the~eigenvalues in a~spectral cluste. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 467-483. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a6/