Mots-clés : Darboux transformation, soliton solution.
@article{TMF_2020_205_3_a5,
author = {Hui Mao},
title = {Obtaining multisoliton solutions of the~$(2+1)$-dimensional {Camassa{\textendash}Holm} system using {Darboux} transformations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {451--466},
year = {2020},
volume = {205},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a5/}
}
TY - JOUR AU - Hui Mao TI - Obtaining multisoliton solutions of the $(2+1)$-dimensional Camassa–Holm system using Darboux transformations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 451 EP - 466 VL - 205 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a5/ LA - ru ID - TMF_2020_205_3_a5 ER -
Hui Mao. Obtaining multisoliton solutions of the $(2+1)$-dimensional Camassa–Holm system using Darboux transformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 451-466. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a5/
[1] R. A. Kraenkel, A. I. Zenchuk, “Two-dimensional integrable generalization of the Camassa–Holm equation”, Phys. Lett. A, 260:3–4 (1999), 218–224 | DOI | MR
[2] R. A. Kraenkel, M. Senthilvelan, A. I. Zenchuk, “Lie symmetry analysis and reductions of a two-dimensional integrable generalization of the Camassa–Holm equation”, Phys. Lett. A, 273:3 (2000), 183–193 | DOI | MR
[3] P. R. Gordoa, A. Pickering, M. Senthilvelan, “A note on the Painlevé analysis of a ($2+1$) dimensional Camassa–Holm equation”, Chaos Solitons Fractals, 28:5 (2006), 1281–1284 | DOI | MR
[4] A. I. Zenchuk, “The spectral problem and particular solutions to the ($2+1$)-dimensional integrable generalization of the Camassa–Holm equation”, Phys. D, 152–153 (2001), 178–188 | DOI | MR
[5] N. Lv, J.-Q. Mei, H.-Q. Zhang, “Differential form method for finding symmetries of a ($2\,{+}\,1$)-dimensional Camassa–Holm system based on its Lax pair”, Chaos Soliton Fractals, 45:4 (2012), 503–506 | DOI | MR
[6] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR
[7] B. Fuchssteiner, A. S. Fokas, “Symplectic structures, their Bäcklund transformation and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR
[8] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR
[9] L.-L. Chau, J.-C. Shaw, M.-H. Tu, “Solving the constrained KP hierarchy by gauge transformations”, J. Math. Phys., 38:8 (1997), 4128–4137 | DOI | MR
[10] W. Oevel, C. Rogers, “Gauge transformations and reciprocal links in $2+1$ dimensions”, Rev. Math. Phys, 5:2 (1993), 299–330 | DOI | MR
[11] W. Oevel, “Darboux theorems and Wronskian formulas for integrable system I: constrained KP flows”, Phys. A, 195:3–4 (1993), 533–576 | DOI | MR
[12] J.-C. Shaw, M.-H. Tu, “Miura and auto-Bäcklund transformations for the cKP and cmKP hierarchies”, J. Math. Phys., 38:11 (1997), 5756–5773 | DOI | MR
[13] J. C. Shaw, H. C. Yen, “Miura and Bäcklund transformations for hierarchies of integrable equations”, Chin. J. Phys., 31:6-I (1993), 709–719
[14] R. Willox, I. Loris, C. R. Gilson, “Binary Darboux transformations for constrained KP hierarchies”, Inverse Problems, 13:3 (1997), 849–865 | DOI | MR
[15] J. Cheng, “The gauge transformation of the modifified KP hierarchy”, J. Nonlinear Math. Phys., 25:1 (2018), 66–85 | DOI | MR
[16] Y. Li, J. E. Zhang, “The multiple-soliton solution of the Camassa–Holm equation”, Proc. R. Soc. London Ser. A, 460:2049 (2004), 2617–2627 | DOI | MR
[17] B. Xia, R. Zhou, Z. Qiao, “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation”, J. Math. Phys., 57:10 (2016), 103502, 12 pp., arXiv: 1506.08639 | DOI | MR
[18] B. Konopelchenko, Solitons in Multidimensions. Inverse Spectral Transform Method, Singapore, World Sci., 1993 | DOI | MR