Mots-clés : soliton solution.
@article{TMF_2020_205_3_a4,
author = {Jin-Jie Yang and Shou-Fu Tian},
title = {Riemann-Hilbert problem for the modified {Landau-Lifshitz} equation with nonzero boundary conditions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {420--450},
year = {2020},
volume = {205},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a4/}
}
TY - JOUR AU - Jin-Jie Yang AU - Shou-Fu Tian TI - Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 420 EP - 450 VL - 205 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a4/ LA - ru ID - TMF_2020_205_3_a4 ER -
%0 Journal Article %A Jin-Jie Yang %A Shou-Fu Tian %T Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 420-450 %V 205 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a4/ %G ru %F TMF_2020_205_3_a4
Jin-Jie Yang; Shou-Fu Tian. Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 420-450. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a4/
[1] Y. B. Bazaliy, B. A. Jones, S.-C. Zhang, “Modification of the Landau–Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials”, Phys. Rev. B, 57:6 (1998), R3213–R23216, arXiv: cond-mat/9706132 | DOI
[2] J. C. Slonczewski, “Excitation of spin waves by an electric current”, J. Magn. Magn. Mater., 195:2 (1999), L261–L268 | DOI
[3] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, “Magnetic solitons”, Phys. Rep., 194:3–4 (1990), 117–238 | DOI
[4] P.-B. He, W. M. Liu, “Nonlinear magnetization dynamics in a ferromagnetic nanowire with spin current”, Phys. Rev. B, 72:6 (2005), 064410, 5 pp. | DOI
[5] Z.-D. Li, Q.-Y. Li, “Dark soliton interaction of spinor Bose–Einstein condensates in an optical lattice”, Ann. Phys. (N. Y.), 322:8 (2007), 1961–1971, arXiv: 1012.5469 | DOI
[6] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR
[7] C.-Q. Su, Y.-Y. Wang, X.-Q. Liu, N. Qin, “Conservation laws, modulation instability and rogue waves for the localized magnetization with spin torque”, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 236–245 | DOI | MR
[8] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 5, Springer, Berlin, 1991 | MR
[9] Z.-D. Li, Q.-Y. Li, L. Li, W. M. Liu, “Soliton solution for the spin current in a ferromagnetic nanowire”, Phys. Rev. E, 76:2 (2007), 026605, 7 pp., arXiv: 0708.3120 | DOI
[10] F. Zhao, Z.-D. Li, Q.-Y. Li, L. Wen, G. Fu, W. M. Liu, “Magnetic rogue wave in a perpendicular anisotropic ferromagnetic nanowire with spin-transfer torque”, Ann. Phys., 327:9 (2012), 2085–2095, arXiv: 1108.3252 | DOI
[11] V. S. Gerdzhikov, P. P. Kulish, “O mnogokomponentnom nelineinom uravnenii Shredingera v sluchae nenulevykh granichnykh uslovii”, Zap. nauchn. sem. LOMI, 131 (1983), 34–46 | MR | Zbl
[12] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | MR
[13] M. J. Ablowitz, G. Biondini, B. Prinari, “Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions”, Inverse Problems, 23:4 (2007), 1711–1758 | DOI | MR
[14] X.-D. Luo, “Inverse scattering transform for the complex reverse space-time nonlocal modified Korteweg–de Vries equation with nonzero boundary conditions and constant phase shift”, Chaos, 29:7 (2019), 073118, 13 pp. | DOI | MR
[15] B. Prinari, G. Biondini, A. D. Trubatch, “Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions”, Stud. Appl. Math., 126:3 (2011), 245–302 | DOI | MR
[16] F. Demontis, B. Prinari, C. van der Mee, F. Vitales, “The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary condition”, Stud. Appl. Math., 131:1 (2013), 1–40 | DOI | MR
[17] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, “The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions”, J. Math. Phys., 55:10 (2014), 101505, 40 pp. | DOI | MR
[18] G. Biondini, E. Fagerstrom, B. Prinari, “Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions”, Phys. D, 333 (2016), 117–136 | DOI | MR
[19] J. Ieda, M. Uchiyama, M. Wadati, “Inverse scattering method for square matrix nonlinear Schrödinger equation under nonvanishing boundary conditions”, J. Math. Phys., 48:1 (2007), 013507, 19 pp., arXiv: nlin/0603010 | DOI | MR
[20] G. Zhang, Z. Yan, Inverse scattering transforms and $N$-double-pole solutions for the derivative NLS equation with zero/non-zero boundary conditions, arXiv: 1812.02387
[21] J. Zhu, L. Wang, “Kuznetsov–Ma solution and Akhmediev breather for TD equation”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 555–567 | DOI | MR
[22] J. Zhu, L. Wang, X. Geng, “Riemann–Hilbert approach to TD equation with nonzero boundary condition”, Front. Math. China., 13:5 (2018), 1245–1265 | DOI | MR
[23] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[24] S.-F. Tian, “Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method”, J. Differ. Equ., 262:1 (2017), 506–558 | DOI | MR
[25] S.-F. Tian, “The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method”, Proc. Roy. Soc. London Ser. A, 472:2195 (2016), 20160588, 22 pp. | DOI | MR
[26] W.-Q. Peng, S.-F. Tian, X.-B. Wang, T.-T. Zhang, Y. Fang, “Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations”, J. Geom. Phys., 146 (2019), 103508, 9 pp. | DOI | MR
[27] J. J. Yang, S. F. Tian, W. Q. Peng, T. T. Zhang, “The $N$-coupled higher-order nonlinear Schrödinger equation: Riemann–Hilbert problem and multi-soliton solutions”, Math. Meth. Appl. Sci., 43:5 (2020), 2458–2472 | DOI | MR
[28] Chzhi-Tsyan Li, Shou-Fu Tyan, Vei-Tsi Pen, Tszin-Tsze Yan, “Metod obratnoi zadachi rasseyaniya i klassifikatsiya solitonnykh reshenii nelineinogo uravneniya Shredingera–Maksvella–Blokha vysshego poryadka”, TMF, 203:3 (2020), 323–341 | DOI | DOI
[29] D.-S. Wang, D.-J. Zhang, J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations”, J. Math. Phys., 51:2 (2010), 023510, 17 pp. | DOI | MR
[30] L. Ai, J. Xu, “On a Riemann–Hilbert problem for the Fokas–Lenells equation”, Appl. Math. Lett., 87 (2019), 57–63 | DOI | MR
[31] Y. Zhang, Y. Cheng, J. He, “Riemann–Hilbert method and $N$-soliton for two-component Gerdjikov–Ivanov equation”, J. Nonliner Math. Phys., 24:2 (2017), 210–223 | DOI | MR
[32] B. Guo, N. Liu, Y. Wang, “A Riemann–Hilbert approach for a new type coupled nonlinear Schrödinger equations”, J. Math. Anal. Appl., 459:1 (2018), 145–158 | DOI | MR
[33] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI
[34] A. B. de Monvel, D. Shepelsky, “Riemann–Hilbert approach for the Camassa–Holm equation on the line”, C. R. Math. Acad. Sci. Paris, 343:10 (2006), 627–632 | DOI | MR
[35] D.-S. Wang, B. Guo, X. Wang, “Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions”, J. Differ. Equ., 266:9 (2019), 5209–5253 | DOI | MR
[36] S.-F. Tian, T.-T. Zhang, “Long-time asymptotic behavior for the Gerdjikov–Ivanov type of derivative nonlinear Schrödinger equation with time-periodic boundary condition”, Proc. AMS, 146:4 (2018), 1713–1729 | DOI | MR
[37] W.-X. Ma, “Riemann–Hilbert problems and $N$-soliton solutions for a coupled mKdV system”, J. Geom. Phys., 132 (2018), 45–54 | DOI | MR
[38] X. Geng, J. Wu, “Riemann–Hilbert approach and $N$-soliton solutions for a generalized Sasa–Satsuma equation”, Wave Motion, 60 (2016), 62–72 | DOI | MR
[39] S.-F. Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theor., 50:39 (2017), 395204, 32 pp. | DOI | MR
[40] A. A. Zabolotskii, “Solution of the reduced anisotropic Maxwell–Bloch equations by using the Riemann–Hilbert problem”, Phys. Rev. E, 75:3 (2007), 036612, 7 pp. | DOI | MR
[41] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[42] M. J. Ablowitz, A. S. Fokas, Complex Variables: Introduction and Applications, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR
[43] P. Henrici, Applied and Computational Complex Analysis, Wiley, New York, 1974 | MR
[44] G. Biondini, G. Kovac̆ic̆, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR
[45] N. Bleistein, R. A. Handelsman, Asymptotic Expansions of Integrals, Dover, New York, 1986 | MR
[46] M. Pichler, G. Biondini, “On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles”, IMA J. Appl. Math., 82:1 (2017), 131–151 | DOI | MR
[47] G. Zhang, S. Chen, Z. Yan, “Focusing and defocusing Hirota equations with non-zero boundary conditions: inverse scattering transforms and soliton solutions”, Commun. Nonlinear Sci. Numer. Simul., 80 (2020), 104927, 22 pp. | DOI | MR