Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 420-450
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a matrix Riemann–Hilbert (RH) problem for the modified Landau–Lifshitz (mLL) equation with nonzero boundary conditions at infinity. In contrast to the case of zero boundary conditions, multivalued functions arise during direct scattering. To formulate the RH problem, we introduce an affine transformation converting the Riemann surface into the complex plane. In the direct scattering problem, we study the analyticity, symmetries, and asymptotic behavior of Jost functions and the scattering matrix in detail. In addition, we find the discrete spectrum, residue conditions, trace formulas, and theta conditions in two cases: with simple poles and with second-order poles present in the spectrum. We solve the inverse problems using the RH problem formulated in terms of Jost functions and scattering coefficients. For further studying the structure of the soliton waves, we consider the dynamical behavior of soliton solutions for the mLL equation with reflectionless potentials. We graphically analyze some remarkable characteristics of these soliton solutions. Based on the analytic solutions, we discuss the influence of each parameter on the dynamics of the soliton waves and breather waves and propose a method for controlling such nonlinear phenomena.
Keywords:
modified Landau–Lifshitz equation, matrix Riemann–Hilbert problem,
nonzero boundary condition
Mots-clés : soliton solution.
Mots-clés : soliton solution.
@article{TMF_2020_205_3_a4,
author = {Jin-Jie Yang and Shou-Fu Tian},
title = {Riemann-Hilbert problem for the modified {Landau-Lifshitz} equation with nonzero boundary conditions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {420--450},
publisher = {mathdoc},
volume = {205},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a4/}
}
TY - JOUR AU - Jin-Jie Yang AU - Shou-Fu Tian TI - Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 420 EP - 450 VL - 205 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a4/ LA - ru ID - TMF_2020_205_3_a4 ER -
%0 Journal Article %A Jin-Jie Yang %A Shou-Fu Tian %T Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 420-450 %V 205 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a4/ %G ru %F TMF_2020_205_3_a4
Jin-Jie Yang; Shou-Fu Tian. Riemann-Hilbert problem for the modified Landau-Lifshitz equation with nonzero boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 420-450. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a4/