Mots-clés : free fermion, boson–fermion correspondence.
@article{TMF_2020_205_3_a3,
author = {M. G. Matushko},
title = {Calogero{\textendash}Sutherland system at a~free fermion point},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {400--419},
year = {2020},
volume = {205},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a3/}
}
M. G. Matushko. Calogero–Sutherland system at a free fermion point. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 400-419. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a3/
[1] D. Bernard, M. Gaudin, F. D. M. Haldane, V. Pasquier, “Yang–Baxter equation in spin chains with long range interactions”, J. Phys. A: Math. Gen., 26:20 (1993), 5219–5236 | DOI | MR
[2] Y. Kato, Y. Kuramoto, “Exact solution of the Sutherland model with arbitrary internal symmetry”, Phys. Rev. Lett., 74:7 (1995), 1222–1225, arXiv: cond-mat/9409031 | DOI
[3] C. F. Dunkl, “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR
[4] G. J. Heckman, “An elementary approach to the hypergeometric shift operators of Opdam”, Invent. Math., 103:1 (1991), 341–350 | DOI | MR
[5] A. P. Polychronakos, “Exchange operator formalism for integrable systems of particles”, Phys. Rev. Lett., 69:5 (1992), 703–705 | DOI | MR
[6] I. Andrić, A. Jevicki, H. Levine, “On the large-$N$ limit in symplectic matrix models”, Nucl. Phys. B, 215:2 (1983), 307–315 | DOI | MR
[7] H. Awata, Y. Matsuo, S. Odake, J. Shiraishi, “Collective field theory, Calogero–Sutherland model and generalized matrix models”, Phys. Lett. B, 347:1 (1995), 49–55, arXiv: hep-th/9411053 | DOI | MR
[8] H. Awata, Y. Matsuo, T. Yamamoto, “Collective field description of spin Calogero–Sutherland models”, J. Phys. A, 29:12 (1996), 3089–3098, arXiv: hep-th/9512065 | DOI | MR
[9] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford, 1998 | MR
[10] M. L. Nazarov, E. K. Sklyanin, “Integrable hierarchy of the quantum Benjamin–Ono equation”, SIGMA, 9 (2013), 078, 14 pp., arXiv: 1309.6464 | DOI | MR
[11] A. N. Sergeev, A. P. Veselov, “Dunkl operators at infinity and Calogero–Moser systems”, Internat. Math. Res. Notices, 2015:21 (2015), 10959–10986 | DOI | MR
[12] A. G. Abanov, P. B. Wiegmann, “Quantum hydrodynamics, the quantum Benjamin–Ono equation, and the Calogero model”, Phys. Rev. Lett., 95:7 (2005), 076402, 4 pp., arXiv: cond-mat/0504041 | DOI
[13] A. P. Polychronakos, “Waves and solitons in the continuum limit of the Calogero–Sutherland model”, Phys. Rev. Lett., 74:26 (1995), 5153–5157 | DOI | MR
[14] S. M. Khoroshkin, M. G. Matushko, “Fermionic limit of the Calogero–Sutherland system”, J. Math. Phys., 60:7 (2019), 071706, 17 pp. | DOI | MR
[15] A. K. Pogrebkov, “Bozon-fermionnoe sootvetstvie i kvantovye integriruemye i bezdispersnye modeli”, UMN, 58:5(353) (2003), 163–196 | DOI | DOI | MR | Zbl
[16] P. Rossi, “Gromov–Witten invariants of target curves via symplectic field theory”, J. Geom. Phys., 58:8 (2008), 931–941 | DOI | MR
[17] A. Alexandrov, A. Zabrodin, “Free fermions and tau-functions”, J. Geom. Phys., 67 (2013), 37–80 | DOI | MR
[18] V. G. Kac, A. K. Raina, N. Rozhkovskaya, Bombay lectures on highest weight representations of infinite dimensional Lie algebras, Advanced Series in Mathematical Physics, 29, World Sci., Singapore, 2013 | DOI | MR