Commutator identities and integrable hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 391-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The approach based on commutator identities for elements of associative algebras was previously effectively used to investigate $(2+1)$-dimensional integrable systems. We develop this approach to investigate integrable hierarchies and their relations.
Keywords: complete integrability, integrable hierarchy.
@article{TMF_2020_205_3_a2,
     author = {A. K. Pogrebkov},
     title = {Commutator identities and integrable hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--399},
     year = {2020},
     volume = {205},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a2/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Commutator identities and integrable hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 391
EP  - 399
VL  - 205
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a2/
LA  - ru
ID  - TMF_2020_205_3_a2
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Commutator identities and integrable hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 391-399
%V 205
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a2/
%G ru
%F TMF_2020_205_3_a2
A. K. Pogrebkov. Commutator identities and integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 391-399. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a2/

[1] A. K. Pogrebkov, “Kommutatornye tozhdestva na assotsiativnykh algebrakh i integriruemost nelineinykh evolyutsionnykh uravnenii”, TMF, 154:3 (2008), 477–491 | DOI | DOI | MR | Zbl

[2] A. K. Pogrebkov, “$2D$ Toda chain and associated commutator identity”, Geometry, Topology, and Mathematical Physics: S. P. Novikov's Seminar: 2006–2007, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 262–269 | DOI | MR

[3] A. K. Pogrebkov, “Hirota difference equation and a commutator identity on an associative algebra”, Algebra i analiz, 22:3 (2010), 191–205 | DOI | MR | Zbl

[4] A. K. Pogrebkov, “Kommutatornye tozhdestva na assotsiativnykh algebrakh, raznostnoe neabelevo uravnenie Khiroty i ego reduktsii”, TMF, 187:3 (2016), 433–446 | DOI | DOI | MR

[5] A. V. Mikhailov, R. I. Yamilov, “Towards classification of $(2+1)$-dimensional integrable equations. Integrability conditions I”, J. Phys. A: Math. Gen., 31:31 (1998), 6707–6715 | DOI | MR

[6] A. Davey, K. Stewartson, “On three dimensional packets of surface waves”, Proc. Roy. Soc. London Ser. A, 338:1613 (1974), 101–110 | DOI | MR

[7] F. Pempinelli, “Solitonnye resheniya gamiltonovykh DSI i DSIII uravnenii”, TMF, 99:3 (1994), 501–508 | DOI | MR | Zbl

[8] C. Rogers, O. Pashaev, “On a $2+1$-dimensional Whitham–Broer–Kaup system: a resonant NLS connection”, Stud. Appl. Math., 127:2 (2011), 141–152 | DOI | MR

[9] P. V. Nabelek, V. E. Zakharov, “Solutions to the Kaup–Broer system and its $(2+1)$ dimensional integrable generalization via the dressing method”, Phys. D, 409 (2020), 132478, 21 pp. | DOI | MR

[10] A. P. Veselov, S. P. Novikov, “Konechnozonnye dvumernye potentsialnye operatory Shredingera. Yavnye formuly i evolyutsionnye uravneniya”, Dokl. AN SSSR, 279:1 (1984), 20–24 | MR | Zbl