Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 368-390

Voir la notice de l'article provenant de la source Math-Net.Ru

We study an unbounded $2\times2$ operator matrix $\mathcal{A}$ in the direct product of two Hilbert spaces. We obtain asymptotic formulas for the number of eigenvalues of $\mathcal{A}$. We consider a $2\times2$ operator matrix $\mathcal{A}_\mu$, where $\mu>0$ is the coupling constant, associated with the Hamiltonian of a system with at most three particles on the lattice $\mathbb{Z}^3$. We find the critical value $\mu_0$ of the coupling constant $\mu$ for which $\mathcal{A}_{\mu_0}$ has an infinite number of eigenvalues. These eigenvalues accumulate at the lower and upper bounds of the essential spectrum. We obtain an asymptotic formula for the number of such eigenvalues in both the left and right parts of the essential spectrum.
Keywords: operator matrix, coupling constant, dispersion function, Fock space, creation operator, annihilation operator, Birman–Schwinger principle, essential spectrum, discrete spectrum, asymptotics.
@article{TMF_2020_205_3_a1,
     author = {T. H. Rasulov and E. B. Dilmurodov},
     title = {Infinite number of eigenvalues of $2\times 2$ operator matrices: {Asymptotic} discrete spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--390},
     publisher = {mathdoc},
     volume = {205},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a1/}
}
TY  - JOUR
AU  - T. H. Rasulov
AU  - E. B. Dilmurodov
TI  - Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 368
EP  - 390
VL  - 205
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a1/
LA  - ru
ID  - TMF_2020_205_3_a1
ER  - 
%0 Journal Article
%A T. H. Rasulov
%A E. B. Dilmurodov
%T Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 368-390
%V 205
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a1/
%G ru
%F TMF_2020_205_3_a1
T. H. Rasulov; E. B. Dilmurodov. Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 368-390. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a1/