@article{TMF_2020_205_3_a1,
author = {T. H. Rasulov and E. B. Dilmurodov},
title = {Infinite number of eigenvalues of $2\times 2$ operator matrices: {Asymptotic} discrete spectrum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {368--390},
year = {2020},
volume = {205},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a1/}
}
TY - JOUR AU - T. H. Rasulov AU - E. B. Dilmurodov TI - Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 368 EP - 390 VL - 205 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a1/ LA - ru ID - TMF_2020_205_3_a1 ER -
%0 Journal Article %A T. H. Rasulov %A E. B. Dilmurodov %T Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 368-390 %V 205 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a1/ %G ru %F TMF_2020_205_3_a1
T. H. Rasulov; E. B. Dilmurodov. Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 368-390. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a1/
[1] C. Tretter, Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, London, 2008 | DOI | MR
[2] D. Mattis, “The few-body problem on lattice”, Rev. Modern Phys., 58:2 (1986), 361–379 | DOI | MR
[3] K. O. Fridrikhs, Vozmuschenie spektra operatorov v gilbertovom prostranstve, Mir, M., 1969
[4] V. A. Malyshev, R. A. Minlos, “Klastepnye opepatopy”, Tr. sem. im. I. G. Petrovskogo, 1983, no. 9, 63–80 | MR | Zbl
[5] S. Albeverio, S. N. Lakaev, T. H. Rasulov, “On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics”, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | MR
[6] S. Albeverio, S. N. Lakaev, T. H. Rasulov, “The Efimov effect for a model operator associated with the Hamiltonian of a non conserved number of particles”, Methods Func. Anal. Topol., 13:1 (2007), 1–16 | MR
[7] S. N. Lakaev, T. Kh. Rasulov, “Ob effekte Efimova v modeli teorii vozmuschenii suschestvennogo spektra”, Funkts. analiz i ego pril., 37:1 (2003), 81–84 | DOI | DOI | MR | Zbl
[8] V. N. Efimov, “Slabosvyazannye sostoyaniya trekh rezonansno vzaimodeistvuyuschikh chastits”, YaF, 12:5 (1970), 1080–1091
[9] D. R. Yafaev, “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl
[10] A. V. Sobolev, “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR
[11] H. Tamura, “The Efimov effect of three-body Schrödinger operators: asymptotics for the number of negative eigenvalues”, Nagoya Math. J., 130 (1993), 55–83 | DOI | MR
[12] S. N. Lakaev, “O beskonechnom chisle tpekhchastichnykh svyazannykh sostoyanii sistemy tpekh kvantovykh peshetchatykh chastits”, TMF, 89:1 (1991), 94–104 | DOI | MR
[13] S. N. Lakaev, “Ob effekte Efimova v sisteme tpekh odinakovykh kvantovykh chastits”, Funkts. analiz i ego ppil., 27:3 (1993), 15–28 | DOI | MR | Zbl
[14] S. N. Lakaev, M. E. Muminov, “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, TMF, 135:3 (2003), 478–503 | DOI | DOI | MR | Zbl
[15] Zh. I. Abdullaev, S. N. Lakaev, “Asimptotika diskretnogo spektra raznostnogo trekhchastichnogo operatora Shredingera na reshetke”, TMF, 136:2 (2003), 231–245 | DOI | DOI | MR | Zbl
[16] S. Albeverio, S. N. Lakaev, Z. I. Muminov, “Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772, arXiv: math-ph/0312026 | DOI | MR
[17] S. N. Lakaev, Z. E. Muminov, “Asimptotika dlya chisla sobstvennykh znachenii trekhchastichnogo operatora Shredingera na reshetke”, Funk. analiz i ego pril., 37:3 (2003), 80–84 | DOI | DOI | MR | Zbl
[18] M. I. Muminov, T. H. Rasulov, “On the eigenvalues of a $2\times 2$ block operator matrix”, Opuscula Math., 35:3 (2015), 371–395 | DOI | MR
[19] M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times 2$ operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77 | MR
[20] M. I. Muminov, T. H. Rasulov, “Embedded eigenvalues of an Hamiltonian in bosonic Fock space”, Commun. Math. Anal., 17:1 (2014), 1–22 | MR | Zbl
[21] R. A. Minlos, H. Spohn, “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, American Mathematical Society Translations: Ser. 2, 177, eds. R. L. Dobrushin, R. A. Minlos, M. A. Shubin, A. M. Vershik, AMS, Providence, RI, 1996, 159–193 | DOI | MR
[22] Yu. V. Zhukov, R. A. Minlos, “Spektr i rasseyanie v modeli “spin-bozon” s ne bolee chem tremya fotonami”, TMF, 103:1 (1995), 63–81 | DOI | MR | Zbl
[23] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl | Zbl
[24] M. Sh. Birman, M. Z. Salomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980
[25] R. P. Feynman, “Creation and annihilation operators”, Statistical Mechanics: A Set of Lectures, CRC Press, London, 2018, 151–197
[26] M. Muminov, H. Neidhardt, T. Rasulov, “On the spectrum of the lattice spin-boson Hamiltonian for any coupling: 1D case”, J. Math. Phys., 56:5 (2015), 053507, 24 pp., arXiv: 1410.4763 | DOI | MR
[27] T. Kh. Rasulov, “O vetvyakh suschestvennogo spektra reshetchatoi modeli spin-bozona s ne bolee chem dvumya fotonami”, TMF, 186:2 (2016), 293–310 | DOI | DOI | MR