Mots-clés : graphene, quasiparticle.
@article{TMF_2020_205_3_a0,
author = {I. Bogaevsky},
title = {Fundamental solution of the~stationary {Dirac} equation with a~linear},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {349--367},
year = {2020},
volume = {205},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a0/}
}
I. Bogaevsky. Fundamental solution of the stationary Dirac equation with a linear. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 3, pp. 349-367. http://geodesic.mathdoc.fr/item/TMF_2020_205_3_a0/
[1] M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge, 2012
[2] T. Tudorovskiy, K. J. A. Reijnders, M. I. Katsnelson, “Chiral tunneling in single-layer and bilayer graphene”, Phys. Scr., 2012:T146 (2012), 014010, 19 pp. | DOI
[3] S. Y. Dobrokhotov, A. A. Tolchennikov, “Solution of the two-dimensional Dirac equation with a linear potential and a localized initial condition”, Russ. J. Math. Phys., 26:2 (2019), 139–151 | DOI | MR
[4] P. Carmier, D. Ullmo, “Berry phase in graphene: Semiclassical perspective”, Phys. Rev. B, 77:24 (2008), 245413, arXiv: 0801.4727 | DOI
[5] J. B. Keller, “Geometrical theory of diffraction”, J. Opt. Soc. Amer., 52:2 (1962), 116–130 | DOI | MR
[6] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65(107):4 (1964), 576–630 | MR | Zbl
[7] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR
[8] V. V. Kucherenko, “Korotkovolnovaya asimptotika funktsii Grina dlya $N$-mernogo volnovogo uravneniya v neodnorodnoi srede”, Zhurn. vychisl. matem. matem. fiz., 8:4 (1968), 908–913 | DOI | MR | Zbl
[9] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Kanonicheskii operator Maslova na pare lagranzhevykh mnogoobrazii i asimptotika reshenii statsionarnykh uravnenii s lokalizovannymi pravymi chastyami”, Dokl. RAN, 475:6 (2017), 624–628 | DOI
[10] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | DOI
[11] V. I. Arnold, “On the interior scattering of waves, defined by hyperbolic variational principles”, J. Geom. Phys., 5:3 (1988), 305–315 | DOI | MR
[12] I. A. Bogaevskii, “Kaustiki vnutrennego rasseyaniya”, Tr. MIAN, 267 (2009), 7–13 | DOI | MR | Zbl
[13] I. A. Bogaevskii, “Perestroiki frontov vnutrennego rasseyaniya”, Dokl. RAN, 436:2 (2011), 155–158
[14] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lektsii po matematicheskoi fizike, Izd-vo Mosk. un-ta, M., 1993 | MR
[15] A. Boutet de Monvel-Berthier, D. Manda, R. Purice, “Limiting absorption principle for the Dirac operator”, Ann. Inst. H. Poincaré Phys. Théor., 58:4 (1993), 413–431 | MR | Zbl
[16] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR