@article{TMF_2020_205_2_a7,
author = {T. Naz and M. F. Shamir},
title = {Dynamical behavior of stellar structures in $f(\mathcal{G})$ gravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {324--345},
year = {2020},
volume = {205},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a7/}
}
T. Naz; M. F. Shamir. Dynamical behavior of stellar structures in $f(\mathcal{G})$ gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 324-345. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a7/
[1] A. G. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009–1038, arXiv: astro-ph/9805201 | DOI
[2] D. N. Spergel, L. Verde, H. V. Peiris et al., “First-year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters”, Astrophys. J. Suppl. Ser., 148:1 (2003), 175–194, arXiv: astro-ph/0302209 | DOI
[3] D. N. Spergel, R. Bean, O Doré et al., “Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology”, Astrophys. J. Suppl., 170:2 (2007), 377–408, arXiv: astro-ph/0603449 | DOI
[4] S. Nojiri, S. D. Odintsov, “Introduction to modified gravity and gravitational alternative for dark energy”, Internat. J. Geom. Meth. Modern Phys., 4:1 (2007), 115–145 | DOI
[5] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144, arXiv: 1011.0544 | DOI | MR
[6] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and late-time evolution”, Phys. Rep., 692 (2017), 1–104, arXiv: 1705.11098 | DOI | MR
[7] H. A. Buchdahl, “Non-linear Lagrangians and cosmological theory”, Mon. Not. R. Astron. Soc., 150:1 (1970), 1–8 | DOI
[8] S. Nojiri, S. D. Odintsov, “Modified Gauss–Bonnet theory as gravitational alternative for dark energy”, Phys. Lett. B, 631:1–2 (2005), 1–6, arXiv: hep-th/0508049 | DOI | MR
[9] G. Congnola, E. Elizalde, S. Nojiri, S. D. Odintsov, S. Zerbini, “Dark energy in modified Gauss–Bonnet gravity: late-time acceleration and the hierarchy problem”, Phys. Rev. D, 73:8 (2006), 084007, 16 pp., arXiv: hep-th/0601008 | DOI
[10] G. Congnola, E. Elizalde, S. Nojiri, S. D. Odintsov, S. Zerbini, “String-inspired Gauss–Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy”, Phys. Rev. D, 75:8 (2007), 086002, 17 pp. | DOI | MR
[11] T. Chiba, “Generalized gravity and a ghost”, J. Cosmol. Astropart. Phys., 2005:3 (2005), 008, 7 pp. | DOI | MR
[12] J. Santos, J. S. Alcaniz, N. Pires, M. J. Rebouas, “Energy conditions and cosmic acceleration”, Phys. Rev. D, 75:8 (2007), 083523, 6 pp., arXiv: astro-ph/0702728 | DOI | MR
[13] M. K. Mak, T. Harko, “Quark stars admitting a one-parameter group of conformal motions”, Internat. J. Modern Phys. D, 13:1 (2004), 149–156, arXiv: gr-qc/0309069 | DOI
[14] M. Chaisi, S. D. Maharaj, “Compact anisotropic spheres with prescribed energy density”, Gen. Rel. Grav., 37:7 (2005), 1177–1189, arXiv: gr-qc/0504098 | DOI | MR
[15] M. Kalam, F. Rahaman, S. Ray, S. M. Hossein, I. Karar, J. Naskar, “Anisotropic strange star with de Sitter spacetime”, Eur. Phys. J. C, 72:12 (2012), 2248, 7 pp., arXiv: 1201.5234 | DOI
[16] M. Kalam, F. Rahaman, S. M. Hossein, S. Ray, “Central density dependent anisotropic compact stars”, Eur. Phys. J. C, 73:4 (2013), 2409, 6 pp., arXiv: 1301.0271 | DOI
[17] V. Fayaz, H. Hossienkhani, A. Aghamohammadi, “Power-law solution for anisotropic universe in $f(G)$ gravity”, Astrophys. Space Sci., 357:2 (2015), 136, 9 pp. | DOI
[18] M. Sharif, H. I. Fatima, “Noncommutative wormhole solutions in $f(G)$ gravity”, Mod. Phys. Lett. A, 30:28 (2015), 1550142 | DOI | MR
[19] M. Zubair, G. Abbas, I. Noureen, “Possible formation of compact stars in $f(R,T)$ gravity”, Astrophys. Space Sci., 361:1 (2016), 8, 10 pp. | DOI | MR
[20] G. Abbas, D. Momeni, M. A. Ali, R. Myrzakulov, S. Qaisar, “Anisotropic compact stars in $f(G)$ gravity”, Astrophys. Space Sci., 357:2 (2015), 158, 11 pp. | DOI
[21] G. Abbas, S. Nazeer, M. A. Meraj, “Cylindrically symmetric models of anisotropic compact stars”, Astrophys. Space Sci., 354:2 (2014), 449–455 | DOI
[22] G. Abbas, A. A. Kanwal, M. Zubair, “Anisotropic compact stars in $f(T)$ gravity”, Astrophys. Space Sci., 357:2 (2015), 109, 8 pp. | DOI
[23] M. Camenzind, Compact Objects in Astrophysics. White Dwarfs, Neutron Stars and Black Holes, Springer, Berlin, 2007 | DOI
[24] R. Goswami, A. M. Nzioki, S. D. Maharaj, S. G. Ghosh, “Collapsing spherical stars in $f(R)$ gravity”, Phys. Rev. D, 90:8 (2014), 084011, 10 pp., arXiv: 1409.2371 | DOI
[25] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Extreme neutron stars from extended theories of gravity”, J. Cosmol. Astropart. Phys., 2015:1 (2015), 001, 19 pp. | DOI | MR
[26] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Nonperturbative models of quark stars in $f(R)$ gravity”, Phys. Lett. B, 742 (2015), 160–166, arXiv: 1412.5453 | DOI
[27] D. Momeni, P. H. R. S. Moraes, H. Gholizade, R. Myrzakulov, “Mimetic compact stars”, Internat. J. Geom. Meth. Modern Phys, 15:6 (2018), 1850091, 19 pp. | DOI | MR
[28] D. Momeni, H. Gholizade, M. Raza, R. Myrzakulov, “Tolman–Oppenheimer–Volkoff equations in nonlocal $f(R)$ gravity”, Internat. J. Modern Phys. A, 30:16 (2015), 1550093, 20 pp., arXiv: 1502.05000 | DOI | MR
[29] S. Capozziello, M. De Laurentis, R. Farinelli, S. D. Odintsov, “Mass-radius relation for neutron stars in $f(R)$ gravity”, Phys. Rev. D, 93:2 (2016), 023501, 11 pp. | DOI | MR
[30] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Maximal neutron star mass and the resolution of the hyperon puzzle in modified gravity”, Phys. Rev. D, 89:10 (2014), 103509, 8 pp., arXiv: 1401.4546 | DOI
[31] N. Itoh, “Hydrostatic equilibrium of hypothetical quark stars”, Prog. Theor. Phys., 44:1 (1970), 291–292 | DOI
[32] E. Farhi, R. L. Jaffe, “Strange matter”, Phys. Rev. D, 30:11 (1984), 2379–2390 | DOI
[33] C. Alcock, E. Farhi, A. Olinto, “Strange stars”, Astrophys. J., 310 (1986), 261–272 | DOI
[34] P. Haensel, J. L. Zdunik, R. Schaefer, “Strange quark stars”, Astron. Astrophys., 160:1 (1986), 121–128
[35] B. V. Ivanov, “Maximum bounds on the surface redshift of anisotropic stars”, Phys. Rev. D, 65:10 (2002), 104011, 4 pp., arXiv: gr-qc/0201090 | DOI | MR
[36] M. K. Mak, T. Harko, “Anisotropic stars in general relativity”, Proc. Roy. Soc. London Ser. A, 459:2030 (2003), 393–408, arXiv: gr-qc/0110103 | DOI | MR
[37] M. Gleiser, K. Dev, “Anistropic stars: Exact solutions and stability”, Internat. J. Modern Phys. D, 13:7 (2004), 1389–1397, arXiv: astro-ph/0401546 | DOI
[38] M. K. Jasim, “Anisotropic strange stars in Tolman–Kuchowicz spacetime”, Eur. Phys. J. C, 78:7 (2018), 603, 11 pp., arXiv: 1801.10594 | DOI
[39] S. K. Maurya, F. Tello-Ortiz, “Generalized relativistic anisotropic compact star models by gravitational decoupling”, Eur. Phys. J. C, 79 (2019), 85, 79–85, 14 pp. | DOI
[40] D. Deb, S. R. Chowdhury, S. Ray, F. Rahaman, B. K. Guha, “Relativistic model for anisotropic strange stars”, Ann. Phys., 387 (2017), 239–252, arXiv: 1606.00713 | DOI | MR
[41] S. Biswas, D. Shee, S. Ray, F. Rahaman, B. K. Guha, “Relativistic strange stars in Tolman–Kuchowicz spacetime”, Ann. Phys., 409 (2019), 167905, 19 pp. | DOI | MR
[42] R. C. Tolman, “Static solutions of Einstein's field equations for spheres of fluid”, Phys. Rev., 55:4 (1939), 364–373 | DOI
[43] B. Kuchowicz, “General relativistic fluid spheres. I. New solutions for spherically symmetric matter distributions”, Acta Phys. Pol., 33 (1968), 541–563
[44] G. J. Olmo, D. R. Garcia, A. Wojnar, “Stellar structure models in modified theories of gravity: lessons and challenges”, Phys. Rep., 876 (2020), 1–75, arXiv: 1912.05202 | DOI | MR
[45] M. F. Shamir, T. Naz, “Stellar structures in $f(\mathcal G)$ gravity with Tolman–Kuchowicz spacetime”, Phys. Dark Universe, 27 (2020), 100472, 11 pp. | DOI
[46] K. D. Krori, J. Barua, “A singularity-free solution for a charged fluid sphere in general relativity”, J. Phys. A: Math. Gen., 8:4 (1975), 508–511 | DOI
[47] A. De Felice, S. Tsujikawa, “Construction of cosmologically viable $f(\mathcal{G})$ gravity models”, Phys. Lett. B, 675:1 (2009), 1–8, arXiv: 0810.5712 | DOI
[48] K. Bamba, S. D. Odintsov, L. Sebastiani, S. Zerbini, “Finite-time future singularities in modified Gauss–Bonnet and $\mathscr F(R,G)$ gravity and singularity avoidance”, Eur. Phys. J. C, 67 (2010), 295–310 | DOI | MR
[49] S. Nojiri, S. D. Odintsov, P. V. Tretyakov, “From inflation to dark energy in the non-minimal modified gravity”, Prog. Theor. Phys. Suppl., 172 (2008), 81–89, arXiv: 0710.5232 | DOI
[50] H. J. Schmidt, “Gauss–Bonnet lagrangian $G\ln G$ and cosmological exact solutions”, Phys. Rev. D, 83:8 (2011), 083513, 7 pp., arXiv: gr-qc/0407053 | DOI
[51] V. Faraoni, “Jebsen–Birkhoff theorem in alternative gravity”, Phys. Rev. D, 81:4 (2010), 044002, 10 pp., arXiv: 1001.2287 | DOI | MR
[52] J. R. Oppenheimer, G. M. Volkoff, “On massive neutron cores”, Phys. Rev., 55:4 (1939), 374–381 | DOI
[53] L. Herrera, “Cracking of self-gravitating compact objects”, Phys. Lett. A, 165:3 (1992), 206–210 | DOI
[54] S. K. Maurya, “Relativistic modeling of compact stars for anisotropic matter distribution”, Eur. Phys. J. A, 53 (2017), 89, 11 pp. | DOI
[55] P. H. R. S. Moraes, J. D. V. Arbañil, M. Malheiro, “Stellar equilibrium configurations of compact stars in $f(R,T)$ theory of gravity”, J. Cosmol. Astropart. Phys., 2016:6 (2016), 005, 12 pp. | DOI | MR
[56] G. A. Carvalho, R. V. Lobato, P. H. R. S. Moraes, J. D. V. Arbañil, E. Otoniel, R. M. Marinho, Jr., M. Malheiro, “Stellar equilibrium configurations of white dwarfs in the $f(R, T)$ gravity”, Eur. Phys. J. C, 77 (2017), 871, 8 pp. | DOI
[57] A. V. Astashenok, S. D. Odintsov, Á. de la Cruz-Dombriz, “The realistic models of relativistic stars in $f(R)=R+\alpha R^2$ gravity”, Class. Quantum Grav., 34:20 (2017), 205008, 20 pp., arXiv: 1704.08311 | DOI | MR
[58] A. V. Astashenok, S. Capozziello, S. D. Odintsov, “Further stable neutron star models from $f(R)$ gravity”, JCAP, 2013:12 (2013), 040, arXiv: 1309.1978 | DOI
[59] S. Ray, A. L. Espíndola, M. Malheiro, J. P. S. Lemos, V. T. Zanchin, “Electrically charged compact stars and formation of charged black holes”, Phys. Rev. D, 68:8 (2003), 084004, 10 pp., arXiv: astro-ph/0307262 | DOI
[60] J. D. V. Arbañil, J. P. S. Lemos, V. T. Zanchin, “Polytropic spheres with electric charge: compact stars, the Oppenheimer–Volkoff and Buchdahl limits, and quasiblack holes”, Phys. Rev. D, 88:8 (2013), 084023, 16 pp., arXiv: 1309.4470 | DOI
[61] E. Witten, “Cosmic separation of phases”, Phys. Rev. D, 30:2 (1984), 272–285 | DOI
[62] N. Stergioulas, “Rotating stars in relativity”, Living Rev. Relativ., 6 (2003), 2003-3, 109 pp., arXiv: gr-qc/0302034 | DOI | MR
[63] J. D. V. Arbañil, M. Malheiro, “Equilibrium and stability of charged strange quark stars”, Phys. Rev. D, 92:8 (2015), 084009, 11 pp., arXiv: 1509.07692 | DOI
[64] R. P. Negreiros, F. Weber, M. Malheiro, V. Usov, “Electrically charged strange quark stars”, Phys. Rev. D, 80:8 (2009), 083006, 6 pp., arXiv: 0907.5537 | DOI
[65] M. F. Shamir, M. Ahmad, “Stellar hydrostatic equilibrium compact structures in $f(\mathscr G,T)$ gravity”, Modern Phys. Lett. A, 34:5 (2019), 1950038, 17 pp., arXiv: 1807.09103 | DOI | MR