Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 262-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the dimer model on a hexagonal lattice. This model can be represented as a "pile of cubes in a box." The energy of a configuration is given by the volume of the pile. The partition function is computed by the classical MacMahon formula or as the determinant of the Kasteleyn matrix. We use the MacMahon formula to derive the scaling behavior of free energy in the limit as the lattice spacing goes to zero and temperature goes to infinity. We consider the case of a finite hexagonal domain, the case where one side of the hexagonal box is infinite, and the case of inhomogeneous Boltzmann weights. We obtain an asymptotic expansion of free energy, which is called finite-size corrections, and discuss the universality and physical meaning of the expansion coefficients.
Mots-clés : dimer, hexagonal lattice.
Keywords: limit shape, free energy scaling, finite-size correction, scaling limit
@article{TMF_2020_205_2_a5,
     author = {A.A. Nazarov and S. A. Paston},
     title = {Finite-size correction to the~scaling of free energy in the~dimer model on a~hexagonal domain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {262--283},
     year = {2020},
     volume = {205},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a5/}
}
TY  - JOUR
AU  - A.A. Nazarov
AU  - S. A. Paston
TI  - Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 262
EP  - 283
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a5/
LA  - ru
ID  - TMF_2020_205_2_a5
ER  - 
%0 Journal Article
%A A.A. Nazarov
%A S. A. Paston
%T Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 262-283
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a5/
%G ru
%F TMF_2020_205_2_a5
A.A. Nazarov; S. A. Paston. Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 262-283. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a5/

[1] R. H. Fowler, G. S. Rushbrooke, “An attempt to extend the statistical theory of perfect solutions”, Trans. Faraday Soc., 33 (1937), 1272–1294 | DOI

[2] P. Kasteleyn, “The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice”, Physica, 27:12 (1961), 1209–1225 | DOI

[3] H. N. V. Temperley, M. E. Fisher, “Dimer problem in statistical mechanics-an exact result”, Philos. Mag. Ser. 8, 6:68 (1961), 1061–1063 | DOI | MR

[4] M. E. Fisher, “On the dimer solution of planar Ising models”, J. Math. Phys., 7:10 (1966), 1776–1781 | DOI

[5] C. Fan, F. Y. Wu, “General lattice model of phase transitions”, Phys. Rev. B, 2:3 (1970), 723–733 | DOI

[6] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings. I”, J. Algebraic Combin., 1:2 (1992), 111–132 | DOI | MR | Zbl

[7] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings. II”, J. Algebraic Combin., 1:3 (1992), 219–234 | DOI | MR

[8] A. M. Vershik, S. V. Kerov, “Asimptotika mery Plansherelya simmetricheskoi gruppy i predelnaya forma tablits Yunga”, Dokl. AN SSSR, 233:6 (1977), 1024–1027 | MR | Zbl

[9] W. Jockusch, J. Propp, P. Shor, Random domino tilings and the arctic circle theorem, arXiv: math/9801068

[10] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165, arXiv: math/9801059 | MR

[11] K. Johansson, “Non-intersecting paths, random tilings and random matrices”, Probab. Theory Related Fields, 123:2 (2002), 225–280 | DOI | MR

[12] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. Math. (2), 163:3 (2006), 1019–1056 | DOI | MR | Zbl

[13] R. Kenyon, Lectures on dimers, arXiv: 0910.3129

[14] A. Borodin, V. Gorin, E. M. Rains, “"$q$-Distributions on boxed plane partitions”, Selecta Math., 16:4 (2010), 731–789 | DOI | MR

[15] P. Di Francesco, E. Guitter, “A tangent method derivation of the arctic curve for $q$-weighted paths with arbitrary starting points”, J. Phys. A: Math. Theor., 52:11 (2019), 115205, 41 pp., arXiv: 1810.07936 | DOI

[16] P. Zinn-Justin, “Six-vertex model with domain wall boundary conditions and one-matrix model”, Phys. Rev. E, 62:3 (2000), 3411–3418, arXiv: math-ph/0005008 | DOI | MR

[17] P. L. Ferrari, H. Spohn, “Domino tilings and the six-vertex model at its free-fermion point”, J. Phys. A: Math. Gen., 39:33 (2006), 10297–1036, arXiv: cond-mat/0605406 | DOI | MR

[18] D. Keating, A. Sridhar, “Random tilings with the GPU”, J. Math. Phys., 59:9 (2018), 091420, 17 pp., arXiv: 1804.07250 | DOI | MR

[19] F. Kolomo, A. G. Pronko, “Podkhod k vychisleniyu korrelyatsionnykh funktsii v shestivershinnoi modeli s granichnymi usloviyami domennoi stenki”, TMF, 171:2 (2012), 254–270 | DOI | DOI | MR

[20] V. S. Kapitonov, A. G. Pronko, “Vzveshennye perechisleniya ploskikh razbienii v yaschike i neodnorodnaya pyativershinnaya model”, Zap. nauchn. sem. POMI, 398 (2012), 125–144 | DOI | MR

[21] V. S. Kapitonov, A. G. Pronko, “Pyativershinnaya model i ploskie razbieniya v yaschike”, Zap. nauchn. sem. POMI, 360 (2008), 162–179 | DOI | Zbl

[22] R. Kenyon, “The Laplacian and Dirac operators on critical planar graphs”, Invent. Math., 150:2 (2002), 409–439, arXiv: math-ph/0202018 | DOI | MR

[23] R. Kenyon, “The asymptotic determinant of the discrete Laplacian”, Acta Math., 185:2 (2000), 239–286 | DOI | MR | Zbl

[24] R. Kenyon, “Dominos and the Gaussian free field”, Ann. Probab., 29:3 (2001), 1128–1137 | DOI | MR | Zbl

[25] N. S. Izmailian, V. V. Papoyan, R. M. Ziff, “Exact finite-size corrections in the dimer model on a planar square lattice”, J. Phys. A: Math. Theor., 52:33 (2019), 335001, 24 pp. | DOI | MR

[26] N. S. Izmailian, M.-C. Wu, C.-K. Hu, “Finite-size corrections and scaling for the dimer model on the checkerboard lattice”, Phys. Rev. E, 94:5 (2016), 052141, 10 pp., arXiv: 1611.03200 | DOI

[27] N. Sh. Izmailian, R. Kenna, “Dimer model on a triangular lattice”, Phys. Rev. E, 84:2 (2011), 021107, 7 pp., arXiv: 1106.3376 | DOI

[28] N. S. Izmailian, V. B. Priezzhev, P. Ruelle, “Non-local finite-size effects in the dimer model”, SIGMA, 3 (2007), 001, 12 pp., arXiv: cond-mat/0701075 | DOI | MR

[29] N. Sh. Izmailian, V. B. Priezzhev, P. Ruelle, C.-K. Hu, “Logarithmic conformal field theory and boundary effects in the dimer model”, Phys. Rev. Lett., 95:26 (2005), 260602, 4 pp., arXiv: cond-mat/0512703 | DOI | MR

[30] J. L. Cardy, I. Peschel, “Finite-size dependence of the free energy in two-dimensional critical systems”, Nucl. Phys. B, 300 (1988), 377–392 | DOI | MR

[31] J. Rasmussen, P. Ruelle, “Refined conformal spectra in the dimer model”, J. Stat. Mech., 2012 (2012), P10002, 44 pp. | DOI | MR

[32] N. Allegra, “Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics”, Nucl. Phys. B, 894 (2015), 685–732, arXiv: 1410.4131 | DOI

[33] A. Morin-Duchesne, J. Rasmussen, P. Ruelle, “Integrability and conformal data of the dimer model”, J. Phys. A: Math. Theor., 49:17 (2016), 174002, 57 pp., arXiv: 1507.04193 | DOI | MR

[34] R. Kenyon, A. Okounkov, “Limit shapes and the complex Burgers equation”, Acta Math., 199:2 (2007), 263–302 | DOI | MR | Zbl

[35] R. Kenyon, “Height fluctuations in the honeycomb dimer model”, Commun. Math. Phys., 281:3 (2008), 675–709 | DOI | MR

[36] P. A. Belov, A. I. Enin, A. A. Nazarov, “Finite size scaling in the dimer and six-vertex model”, J. Phys.: Conf. Ser., 1135:1 (2018), 012024, 11 pp., arXiv: 1809.05599 | DOI

[37] A. Sridhar, Asymptotic determinant of discrete Laplace–Beltrami operators, arXiv: 1501.02057

[38] M. Vuletić, “A generalization of MacMahon's formula”, Trans. Amer. Math. Soc., 361:5 (2009), 2789–2804 | DOI | MR

[39] R. Dijkgraaf, D. Orlando, S. Reffert, “Dimer models, free fermions and super quantum mechanics”, Adv. Theor. Math. Phys., 13:5 (2009), 1255–1315 | MR | Zbl

[40] A. O. Gogolin, A. A. Nersesyan, A. M. Tsvelik, Bosonization and Strongly Correlated Systems, Cambridge Univ. Press, Cambridge, 2004 | MR

[41] N. S. Izmailian, “Finite size and boundary effects in critical two-dimensional free-fermion models”, Eur. Phys. J. B, 90:8 (2017), 160, 18 pp. | DOI | MR

[42] A. Okounkov, N. Reshetikhin, “Random skew plane partitions and the Pearcey process”, Commun. Math. Phys., 269:3 (2007), 571–609 | DOI | MR