Keywords: limit shape, free energy scaling, finite-size correction, scaling limit
@article{TMF_2020_205_2_a5,
author = {A.A. Nazarov and S. A. Paston},
title = {Finite-size correction to the~scaling of free energy in the~dimer model on a~hexagonal domain},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {262--283},
year = {2020},
volume = {205},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a5/}
}
TY - JOUR AU - A.A. Nazarov AU - S. A. Paston TI - Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 262 EP - 283 VL - 205 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a5/ LA - ru ID - TMF_2020_205_2_a5 ER -
%0 Journal Article %A A.A. Nazarov %A S. A. Paston %T Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 262-283 %V 205 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a5/ %G ru %F TMF_2020_205_2_a5
A.A. Nazarov; S. A. Paston. Finite-size correction to the scaling of free energy in the dimer model on a hexagonal domain. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 262-283. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a5/
[1] R. H. Fowler, G. S. Rushbrooke, “An attempt to extend the statistical theory of perfect solutions”, Trans. Faraday Soc., 33 (1937), 1272–1294 | DOI
[2] P. Kasteleyn, “The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice”, Physica, 27:12 (1961), 1209–1225 | DOI
[3] H. N. V. Temperley, M. E. Fisher, “Dimer problem in statistical mechanics-an exact result”, Philos. Mag. Ser. 8, 6:68 (1961), 1061–1063 | DOI | MR
[4] M. E. Fisher, “On the dimer solution of planar Ising models”, J. Math. Phys., 7:10 (1966), 1776–1781 | DOI
[5] C. Fan, F. Y. Wu, “General lattice model of phase transitions”, Phys. Rev. B, 2:3 (1970), 723–733 | DOI
[6] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings. I”, J. Algebraic Combin., 1:2 (1992), 111–132 | DOI | MR | Zbl
[7] N. Elkies, G. Kuperberg, M. Larsen, J. Propp, “Alternating-sign matrices and domino tilings. II”, J. Algebraic Combin., 1:3 (1992), 219–234 | DOI | MR
[8] A. M. Vershik, S. V. Kerov, “Asimptotika mery Plansherelya simmetricheskoi gruppy i predelnaya forma tablits Yunga”, Dokl. AN SSSR, 233:6 (1977), 1024–1027 | MR | Zbl
[9] W. Jockusch, J. Propp, P. Shor, Random domino tilings and the arctic circle theorem, arXiv: math/9801068
[10] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165, arXiv: math/9801059 | MR
[11] K. Johansson, “Non-intersecting paths, random tilings and random matrices”, Probab. Theory Related Fields, 123:2 (2002), 225–280 | DOI | MR
[12] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and amoebae”, Ann. Math. (2), 163:3 (2006), 1019–1056 | DOI | MR | Zbl
[13] R. Kenyon, Lectures on dimers, arXiv: 0910.3129
[14] A. Borodin, V. Gorin, E. M. Rains, “"$q$-Distributions on boxed plane partitions”, Selecta Math., 16:4 (2010), 731–789 | DOI | MR
[15] P. Di Francesco, E. Guitter, “A tangent method derivation of the arctic curve for $q$-weighted paths with arbitrary starting points”, J. Phys. A: Math. Theor., 52:11 (2019), 115205, 41 pp., arXiv: 1810.07936 | DOI
[16] P. Zinn-Justin, “Six-vertex model with domain wall boundary conditions and one-matrix model”, Phys. Rev. E, 62:3 (2000), 3411–3418, arXiv: math-ph/0005008 | DOI | MR
[17] P. L. Ferrari, H. Spohn, “Domino tilings and the six-vertex model at its free-fermion point”, J. Phys. A: Math. Gen., 39:33 (2006), 10297–1036, arXiv: cond-mat/0605406 | DOI | MR
[18] D. Keating, A. Sridhar, “Random tilings with the GPU”, J. Math. Phys., 59:9 (2018), 091420, 17 pp., arXiv: 1804.07250 | DOI | MR
[19] F. Kolomo, A. G. Pronko, “Podkhod k vychisleniyu korrelyatsionnykh funktsii v shestivershinnoi modeli s granichnymi usloviyami domennoi stenki”, TMF, 171:2 (2012), 254–270 | DOI | DOI | MR
[20] V. S. Kapitonov, A. G. Pronko, “Vzveshennye perechisleniya ploskikh razbienii v yaschike i neodnorodnaya pyativershinnaya model”, Zap. nauchn. sem. POMI, 398 (2012), 125–144 | DOI | MR
[21] V. S. Kapitonov, A. G. Pronko, “Pyativershinnaya model i ploskie razbieniya v yaschike”, Zap. nauchn. sem. POMI, 360 (2008), 162–179 | DOI | Zbl
[22] R. Kenyon, “The Laplacian and Dirac operators on critical planar graphs”, Invent. Math., 150:2 (2002), 409–439, arXiv: math-ph/0202018 | DOI | MR
[23] R. Kenyon, “The asymptotic determinant of the discrete Laplacian”, Acta Math., 185:2 (2000), 239–286 | DOI | MR | Zbl
[24] R. Kenyon, “Dominos and the Gaussian free field”, Ann. Probab., 29:3 (2001), 1128–1137 | DOI | MR | Zbl
[25] N. S. Izmailian, V. V. Papoyan, R. M. Ziff, “Exact finite-size corrections in the dimer model on a planar square lattice”, J. Phys. A: Math. Theor., 52:33 (2019), 335001, 24 pp. | DOI | MR
[26] N. S. Izmailian, M.-C. Wu, C.-K. Hu, “Finite-size corrections and scaling for the dimer model on the checkerboard lattice”, Phys. Rev. E, 94:5 (2016), 052141, 10 pp., arXiv: 1611.03200 | DOI
[27] N. Sh. Izmailian, R. Kenna, “Dimer model on a triangular lattice”, Phys. Rev. E, 84:2 (2011), 021107, 7 pp., arXiv: 1106.3376 | DOI
[28] N. S. Izmailian, V. B. Priezzhev, P. Ruelle, “Non-local finite-size effects in the dimer model”, SIGMA, 3 (2007), 001, 12 pp., arXiv: cond-mat/0701075 | DOI | MR
[29] N. Sh. Izmailian, V. B. Priezzhev, P. Ruelle, C.-K. Hu, “Logarithmic conformal field theory and boundary effects in the dimer model”, Phys. Rev. Lett., 95:26 (2005), 260602, 4 pp., arXiv: cond-mat/0512703 | DOI | MR
[30] J. L. Cardy, I. Peschel, “Finite-size dependence of the free energy in two-dimensional critical systems”, Nucl. Phys. B, 300 (1988), 377–392 | DOI | MR
[31] J. Rasmussen, P. Ruelle, “Refined conformal spectra in the dimer model”, J. Stat. Mech., 2012 (2012), P10002, 44 pp. | DOI | MR
[32] N. Allegra, “Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics”, Nucl. Phys. B, 894 (2015), 685–732, arXiv: 1410.4131 | DOI
[33] A. Morin-Duchesne, J. Rasmussen, P. Ruelle, “Integrability and conformal data of the dimer model”, J. Phys. A: Math. Theor., 49:17 (2016), 174002, 57 pp., arXiv: 1507.04193 | DOI | MR
[34] R. Kenyon, A. Okounkov, “Limit shapes and the complex Burgers equation”, Acta Math., 199:2 (2007), 263–302 | DOI | MR | Zbl
[35] R. Kenyon, “Height fluctuations in the honeycomb dimer model”, Commun. Math. Phys., 281:3 (2008), 675–709 | DOI | MR
[36] P. A. Belov, A. I. Enin, A. A. Nazarov, “Finite size scaling in the dimer and six-vertex model”, J. Phys.: Conf. Ser., 1135:1 (2018), 012024, 11 pp., arXiv: 1809.05599 | DOI
[37] A. Sridhar, Asymptotic determinant of discrete Laplace–Beltrami operators, arXiv: 1501.02057
[38] M. Vuletić, “A generalization of MacMahon's formula”, Trans. Amer. Math. Soc., 361:5 (2009), 2789–2804 | DOI | MR
[39] R. Dijkgraaf, D. Orlando, S. Reffert, “Dimer models, free fermions and super quantum mechanics”, Adv. Theor. Math. Phys., 13:5 (2009), 1255–1315 | MR | Zbl
[40] A. O. Gogolin, A. A. Nersesyan, A. M. Tsvelik, Bosonization and Strongly Correlated Systems, Cambridge Univ. Press, Cambridge, 2004 | MR
[41] N. S. Izmailian, “Finite size and boundary effects in critical two-dimensional free-fermion models”, Eur. Phys. J. B, 90:8 (2017), 160, 18 pp. | DOI | MR
[42] A. Okounkov, N. Reshetikhin, “Random skew plane partitions and the Pearcey process”, Commun. Math. Phys., 269:3 (2007), 571–609 | DOI | MR