Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 242-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the proper-time method and describes a model case that reflects the subtleties of constructing the heat kernel, is easily extended to more general cases (curved space, manifold with a boundary), and contains two interrelated parts: an asymptotic expansion and a path integral representation. We discuss the significance of gauge conditions and the role of ordered exponentials in detail, derive a new nonrecursive formula for the Seeley–DeWitt coefficients on the diagonal, and show the equivalence of two main approaches using the exponential formula.
Keywords: path integral, Wilson line, ordered exponential, Fock–Schwinger gauge, Laplace operator, heat kernel, Seeley–DeWitt coefficient, proper time method.
@article{TMF_2020_205_2_a4,
     author = {A. V. Ivanov and N. V. Kharuk},
     title = {Heat kernel: {Proper-time} method, {Fock{\textendash}Schwinger} gauge, path integral, and {Wilson} line},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {242--261},
     year = {2020},
     volume = {205},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a4/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - N. V. Kharuk
TI  - Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 242
EP  - 261
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a4/
LA  - ru
ID  - TMF_2020_205_2_a4
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A N. V. Kharuk
%T Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 242-261
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a4/
%G ru
%F TMF_2020_205_2_a4
A. V. Ivanov; N. V. Kharuk. Heat kernel: Proper-time method, Fock–Schwinger gauge, path integral, and Wilson line. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 242-261. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a4/

[1] V. Fock, “Die Eigenzeit in der klassischen und in der Quantenmechanik”, Phys. Z. Sowjetunion, 12:4 (1937), 404–425 | Zbl

[2] Y. Nambu, “The use of the proper time in quantum electrodynamics I”, Progr. Theor. Phys., 5:1 (1950), 82–94 | DOI | MR

[3] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., 82:5 (1951), 664–679 | DOI | MR

[4] B. S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York, 1965 | MR

[5] B. S. DeWitt, “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160:5 (1967), 1113–1148 | DOI

[6] B. S. DeWitt, “Quantum theory of gravity. II. The manifestly covariant theory”, Phys. Rev., 162:5 (1967), 1195–1239 | DOI

[7] B. S. DeWitt, “Quantum theory of gravity. III. Applications of the covariant theory”, Phys. Rev., 162:5 (1967), 1239–1256 | DOI

[8] B. S. DeWitt, “Quantum field theory in curved spacetime”, Phys. Rep., 19:6 (1975), 295–357 | DOI

[9] R. T. Seeley, “Singular integrals and boundary value problems”, Amer. J. Math., 88:4 (1966), 781–809 | DOI | MR

[10] R. T. Seeley, “Complex powers of an elliptic operator”, Singular Integrals, Proceedings of Symposia in Pure Mathematics, 10, ed. P. Calderón, AMS, Providence, RI, 1967, 288–307 | DOI | MR

[11] R. T. Seeley, “The resolvent of an elliptic boundary value problem”, Amer. J. Math., 91:4 (1969), 889–920 | DOI | MR

[12] P. B. Gilkey, “The spectral geometry of a Riemannian manifold”, J. Differ. Geom., 10:4 (1975), 601–618 | DOI | MR

[13] J. Schwinger, “Casimir effect in source theory”, Lett. Math. Phys., 1:1 (1975), 43–47 | DOI | MR

[14] M. Bordag, U. Mohideen, V. M. Mostepanenko, “New developments in the Casimir effect”, Phys. Rept., 353:1–3 (2001), 1–205, arXiv: quant-ph/0106045 | DOI | MR

[15] R. D. Ball, “Chiral gauge theory”, Phys. Rept., 182:1–2 (1989), 1–186 | DOI | MR

[16] C. Callan, F. Wilczek, “On geometric entropy”, Phys. Lett. B, 333:1–2 (1994), 55–61 | DOI | MR

[17] I. Jack, H. Osborn, “Two-loop background field calculations for arbitrary background fields”, Nucl. Phys. B, 207:3 (1982), 474–504 | DOI

[18] J. P. Börnsen, A. E. M. van de Ven, “Three-loop Yang–Mills $\beta$-function via the covariant background field method”, Nucl. Phys. B, 657 (2003), 257–303, 1–3, arXiv: hep-th/0211246 | DOI | MR

[19] M. F. Atiyah, I. M. Singer, “The index of elliptic operators on compact manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR

[20] V. K. Patodi, “Curvature and the eigenforms of the Laplace operator”, J. Differ. Geom., 5 (1971), 233–249 | DOI | MR

[21] P. B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, CRC Press, Boca Raton, 1994 | MR

[22] H. P. McKean, Jr., I. M. Singer, “Curvature and the eigenvalues of the Laplacian”, J. Differ. Geom., 1:1 (1967), 43–69 | DOI | MR

[23] D. M. McAvity, H. Osborn, “A DeWitt expansion of the heat kernel for manifolds with a boundary”, Class. Quantum Grav., 8:4 (1991), 603–638 | DOI | MR

[24] D. M. McAvity, H. Osborn, “Asymptotic expansion of the heat kernel for generalized boundary conditions”, Class. Quantum Grav., 8:8 (1991), 1445–1454 | DOI | MR

[25] D. M. McAvity, “Heat kernel asymptotics for mixed boundary conditions”, Class. Quantum Grav., 9:8 (1992), 1983–1997 | DOI | MR

[26] A. O. Barvinsky, Yu. V. Gusev, V. F. Mukhanov, D. V. Nesterov, “Nonperturbative late time asymptotics for heat kernel in gravity theory”, Phys. Rev. D, 68:10 (2003), 105003, arXiv: hep-th/0306052 | DOI | MR

[27] M. Bordag, D. V. Vassilevich, “Heat kernel expansion for semitransparent boundaries”, J. Phys. A: Math. Gen., 32:47 (1999), 8247–8259, arXiv: hep-th/9907076 | DOI | MR

[28] D. V. Vassilevich, “Index theorems and domain walls”, JHEP, 07 (2018), 108, 13 pp. | DOI | MR

[29] K. Kirsten, “Heat kernel asymptotics: more special case calculations”, Nucl. Phys. B Proc. Suppl., 104:1–3 (2002), 119–126, arXiv: hep-th/0108004 | DOI | MR

[30] D. V. Vassilevich, “Heat kernel expansion: user's manual”, Phys. Rep., 388:5–6 (2003), 279–360, arXiv: hep-th/0306138 | DOI | MR

[31] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev. Modern Phys., 20:2 (1948), 367–387 | DOI | MR

[32] R. P. Feynman, “The theory of positrons”, Phys. Rev., 76:6 (1949), 749–759 | DOI

[33] M. Ludewig, Heat kernels as path integrals, arXiv: 1810.07898

[34] F. Bastianelli, O. Corradini, P. A. G. Pisani, “Worldline approach to quantum field theories on flat manifolds with boundaries”, JHEP, 02 (2007), 059, 18 pp., arXiv: hep-th/0612236 | DOI | MR

[35] J. R. Norris, “Path integral formulae for heat kernels and their derivatives”, Probab. Theory Related Fields, 94:4 (1993), 525–541 | DOI | MR

[36] J. S. Dowker, R. Critchley, “Effective Lagrangian and energy momentum tensor in de Sitter space”, Phys. Rev. D, 13:12 (1976), 3224–3232 | DOI

[37] S. W. Hawking, “Zeta function regularization of path integrals in curved spacetime”, Commun. Math. Phys., 55:2 (1977), 133–148 | DOI | MR

[38] A. A. Bytsenko, G. Cognola, L. Vanzo, S. Zerbini, “Quantum fields and extended objects in space-times with constant curvature spatial section”, Phys. Rep., 266:1–2 (1996), 1–126, arXiv: hep-th/9505061 | DOI | MR

[39] P. Amsterdamski, A. L. Berkin, D. J. O'Connor, “$b_8$ 'Hamidew' coefficient for a scalar field”, Class. Quantum Grav., 6:12 (1989), 1981–1991 | DOI | MR

[40] I. G. Avramidi, “The covariant technique for the calculation of the heat kernel asymptotic expansion”, Phys. Lett. B, 238:1 (1990), 92–97 | DOI | MR

[41] A. E. M. van de Ven, “Index-free heat kernel coefficients”, Class. Quantum Grav., 15:8 (1998), 2311–2344 | DOI | MR

[42] S. A. Fulling, G. Kennedy, “The resolvent parametrix of the general elliptic linear differential operator: a closed form for the intrinsic symbol”, Trans. Amer. Math. Soc., 310:2 (1988), 583–617 | DOI | MR

[43] A. V. Ivanov, “Diagrammatika teplovogo yadra kovariantnogo operatora Laplasa”, TMF, 198:1 (2019), 113–132, arXiv: 1905.05455 | DOI

[44] A. O. Barvinsky, G. A. Vilkovisky, “Beyond the Schwinger–DeWitt technique: converting loops into trees and in-in currents”, Nucl. Phys. B, 282 (1987), 163–188 | DOI | MR

[45] A. O. Barvinsky, G. A. Vilkovisky, “Covariant perturbation theory (II). Second order in the curvature. General algorithms”, Nucl. Phys. B, 333:2 (1990), 471–511 | DOI | MR

[46] A. O. Barvinsky, G. A. Vilkovisky, “Covariant perturbation theory (III). Spectral representations of the third-order form factors”, Nucl. Phys. B, 333:2 (1990), 512–524 | DOI | MR

[47] I. G. Avramidi, Heat Kernel and Quantum Qravity, Lecture Notes in Physics, 64, Springer, Berlin, 2000 | DOI | MR

[48] A. V. Ivanov, “About renormalization of the Yang–Mills theory and the approach to calculation of the heat kernel”, EPJ Web Conf., 158 (2017), 07004, 5 pp. | DOI

[49] A. V. Ivanov, “O primenenii matrichnogo formalizma dlya teplovogo yadra v teorii chisel”, Zap. nauchn. sem. POMI, 473 (2018), 147–160 | DOI | MR

[50] J. S. Dowker, K. Kirsten, “Heat-kernel coefficients for oblique boundary conditions”, Class. Quantum Grav., 14:9 (1997), L169–L175 | DOI | MR

[51] J. S. Dowker, K. Kirsten, “The $a_{3/2}$ heat kernel coefficient for oblique boundary conditions”, Class. Quantum Grav., 16:6 (1999), 1917–1936, arXiv: hep-th/9806168 | DOI | MR

[52] I. G. Avramidi, G. Esposito, “New invariants in the $1$-loop divergences on manifolds with boundary”, Class. Quantum Grav., 15:2 (1998), 281–297, arXiv: hep-th/9701018 | DOI | MR

[53] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR | MR | Zbl

[54] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005 | DOI | MR | Zbl

[55] A. M. Polyakov, Kalibrovochnye polya i struny, Udmurtskii un-t, Izhevsk, 1999 | MR | Zbl

[56] P. A. J. Liggatt, A. J. Macfarlane, “Phase factors and point splitting for non-Abelian gauge theories”, J. Phys. G, 4:5 (1978), 633–645 | DOI

[57] G. M. Shore, “Symmetry restoration and the background field method in gauge theories”, Ann. Phys., 137:2 (1981), 262–305 | DOI | MR

[58] M. Lüscher, “Dimensional regularisation in the presence of large background fields”, Ann. Phys., 142:2 (1982), 359–392 | DOI | MR

[59] B. K. Skagerstam, “A note on the Poincaré gauge”, Amer. J. Phys., 51:12 (1983), 1148–1149 | DOI

[60] J. D. Jackson, “From Lorenz to Coulomb and other explicit gauge transformations”, Amer. J. Phys., 70:9 (2002), 917–928, arXiv: physics/0204034 | DOI

[61] V. S. Vladimirov, Uravneniya matematicheskii fiziki, Nauka, M., 1981 | MR | Zbl

[62] L. A. Takhtadzhyan, Kvantovaya mekhanika dlya matematikov, NITs "Regulyarnaya i khaoticheskaya dinamika, M.–Izhevsk, 2011 | DOI | MR

[63] K. Kirsten, A. J. McKane, “Functional determinants in the presence of zero modes”, Quantum Field Theory Under the Influence of External Conditions (QFEXT03) (University of Oklahoma, Norman, OK, USA, 15–19 September, 2003), ed. K. Milton, Rinton Press, Princeton, NJ, 2004, 146–151, arXiv: hep-th/0507005

[64] D. Fursaev, D. V. Vassilevich, Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory, Springer, Dordrecht, 2011 | DOI | MR

[65] A. V. Ivanov, N. V. Kharuk, “Non-recursive formula for trace of heat kernel”, 2019 Days on Diffraction (DD) (St. Petersburg, Russia, 3–7 June, 2019), IEEE Press, New York, 2019, 74–77 | DOI