Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 222-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the phenomenon of the complete coincidence of key properties of Calabi–Yau manifolds realized as hypersurfaces in two different weighted projective spaces. More precisely, the first manifold in such a pair is realized as a hypersurface in a weighted projective space, and the second is realized as a hypersurface in an orbifold of another weighted projective space. The two manifolds in each pair have the same Hodge numbers and the same geometry on the complex structure moduli space and are also associated with the same $N=2$ gauged linear sigma model. We explain these coincidences using the correspondence between Calabi–Yau manifolds and the Batyrev reflexive polyhedra.
Keywords: superstring theory, compactification on Calabi–Yau manifold, mirror symmetry.
@article{TMF_2020_205_2_a3,
     author = {A. A. Belavin and M. Yu. Belakovskii},
     title = {Coincidences between {Calabi{\textendash}Yau} manifolds of {Berglund{\textendash}H\"ubsch} type and {Batyrev} polytopes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--241},
     year = {2020},
     volume = {205},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a3/}
}
TY  - JOUR
AU  - A. A. Belavin
AU  - M. Yu. Belakovskii
TI  - Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 222
EP  - 241
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a3/
LA  - ru
ID  - TMF_2020_205_2_a3
ER  - 
%0 Journal Article
%A A. A. Belavin
%A M. Yu. Belakovskii
%T Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 222-241
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a3/
%G ru
%F TMF_2020_205_2_a3
A. A. Belavin; M. Yu. Belakovskii. Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 222-241. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a3/

[1] P. Berglund, T. Hübsch, “A generalized construction of mirror manifolds”, Nucl. Phys. B, 393:1–2 (1993), 377–391, arXiv: hep-th/9201014 | DOI | MR

[2] P. Berglund, T. Hübsch, “A generalized construction of Calabi–Yau models and mirror symmetry”, SciPost Phys., 4:2 (2018), 009, arXiv: 1611.10300 | DOI

[3] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, M. Romo, “Two-sphere partition functions and Gromov–Witten invariants”, Commun. Math. Phys., 325:3 (2014), 1139–1170, arXiv: 1208.6244 | DOI | MR

[4] E. Witten, “Phases of $N=2$ theories in two-dimensions”, Nucl. Phys. B, 403:1–2 (1993), 159–222, arXiv: hep-th/9301042 | DOI | MR

[5] K. Aleshkin, A. Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold”, J. Phys. A: Math. Theor., 51:5 (2018), 055403, 18 pp., arXiv: 1706.05342 | DOI | MR

[6] K. Aleshkin, A. Belavin, “Special geometry on the 101 dimesional moduli space of the quintic threefold”, JHEP, 03 (2018), 018, 14 pp., arXiv: 1710.11609 | DOI | MR

[7] K. Aleshkin, A. Belavin, “Exact computation of the special geometry for Calabi–Yau hypersurfaces of Fermat type”, Pisma v ZhETF, 108:9–10 (2018), 723–724, arXiv: 1806.02772 | DOI

[8] K. Aleshkin, A. Belavin, A. Litvinov, “Two-sphere partition functions and Kahler potentials on CY moduli spaces”, Pisma v ZhETF, 108:10 (2018), 725 | DOI

[9] K. Aleshkin, A. Belavin, A. Litvinov, “JKLMR conjecture and Batyrev construction”, J. Stat. Mech., 2019 (2019), 034003, 9 pp., arXiv: 1812.00478 | DOI | MR

[10] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Alg.Geom., 3:3 (1994), 493–535, arXiv: alg-geom/9310003 | MR

[11] W. Lerche, C. Vafa, N. P. Warner, “Chiral rings in $N=2$ superconformal theories”, Nucl. Phys., 324:2 (1989), 427–474 | DOI | MR

[12] P. Candelas, X. C. de la Ossa, “Moduli space of Calabi–Yau manifolds”, Nucl. Phys. B, 355:2 (1991), 455–481 | DOI | MR

[13] P. Candelas, X. C. De La Ossa, P. S. Green, L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nucl. Phys. B, 359:1 (1991), 21–74 | DOI | MR

[14] P. Berglund, P. Candelas, X. C. de la Ossa, A. Font, T. Hübsch, D. Jančić, F. Quevedo, “Periods for Calabi–Yau and Landau–Ginzburg vacua”, Nucl. Phys. B, 419:2 (1994), 352–403, arXiv: hep-th/9308005 | DOI

[15] A. Chiodo, H. Iritani, Y. Ruan, “Landau–Ginzburg/Calabi–Yau correspondence. Global mirror symmetry and Orlov equivalence”, Publ. IHES, 119:1 (2013), 127–216, arXiv: 1201.0813 | DOI | MR

[16] K. Aleshkin, A. Belavin, “Special geometry on the moduli space for the two-moduli non-Fermat Calabi–Yau”, Phys. Lett. B, 776 (2018), 139–144, arXiv: 1708.08362 | DOI | MR

[17] G. Bonelli, A. Sciarappa, A. Tanzini, P. Vasko, “Vortex partition functions, wall crossing and equivariant Gromov–Witten invariants”, Commun. Math. Phys., 333:2 (2015), 717–760, arXiv: 1307.5997 | DOI | MR

[18] J. Gomis, S. Lee, “Exact Kähler potential from gauge theory and mirror symmetry”, JHEP, 04 (2013), 019, 37 pp. | DOI | MR

[19] N. Doroud, J. Gomis, “Gauge theory dynamics and Kähler potential for Calabi–Yau complex moduli”, JHEP, 12 (2013), 099, arXiv: 1309.2305 | DOI

[20] E. Gerchkovitz, J. Gomis, Z. Komargodski, “Sphere partition functions and the Zamolodchikov metric”, JHEP, 11 (2014), 001, 27 pp., arXiv: 1405.7271 | DOI | MR

[21] F. Benini, S. Cremonesi, “Partition functions of $\mathcal{N}=(2,2)$ gauge theories on S$^{2}$ and vortices”, Commun. Math. Phys., 334:3 (2015), 1483–1527, arXiv: 1206.2356 | DOI | MR

[22] N. Doroud, J. Gomis, B. Le Floch, S. Lee, “Exact results in $D=2$ supersymmetric gauge theories”, JHEP, 05 (2013), 093, 70 pp., arXiv: 1206.2606 | DOI | MR

[23] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, “Toric geometry for string theory”, Mirror Symmetry, Clay Mathematics Monographs, 1, AMS, Providence, RI, Clay Mathematics Institute, 2003, 101–142, arXiv: hep-th/0002222 | MR

[24] A. A. Belavin, B. A. Eremin, “Statisticheskaya summa $\mathcal{N}=(2,2)$ supersimmetrichnykh modelei i spetsialnaya geometriya na prostranstve modulei mnogoobrazii Kalabi–Yau”, TMF, 201:2 (2019), 222–231 | DOI | DOI | MR

[25] P. Candelas, X. C. de la Ossa, S. Katz, “Mirror symmetry for Calabi–Yau hypersurfaces in weighted and extensions of Landau–Ginzburg theory”, Nucl. Phys. B, 450:1–2 (1995), 267–290, arXiv: hep-th/9412117 | DOI | MR

[26] D. Favero, T. L. Kelly, “Derived categories of BHK mirrors”, Adv. Math., 352 (2019), 943–980, arXiv: 1602.05876 | DOI | MR