@article{TMF_2020_205_2_a3,
author = {A. A. Belavin and M. Yu. Belakovskii},
title = {Coincidences between {Calabi{\textendash}Yau} manifolds of {Berglund{\textendash}H\"ubsch} type and {Batyrev} polytopes},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {222--241},
year = {2020},
volume = {205},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a3/}
}
TY - JOUR AU - A. A. Belavin AU - M. Yu. Belakovskii TI - Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 222 EP - 241 VL - 205 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a3/ LA - ru ID - TMF_2020_205_2_a3 ER -
%0 Journal Article %A A. A. Belavin %A M. Yu. Belakovskii %T Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 222-241 %V 205 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a3/ %G ru %F TMF_2020_205_2_a3
A. A. Belavin; M. Yu. Belakovskii. Coincidences between Calabi–Yau manifolds of Berglund–Hübsch type and Batyrev polytopes. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 222-241. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a3/
[1] P. Berglund, T. Hübsch, “A generalized construction of mirror manifolds”, Nucl. Phys. B, 393:1–2 (1993), 377–391, arXiv: hep-th/9201014 | DOI | MR
[2] P. Berglund, T. Hübsch, “A generalized construction of Calabi–Yau models and mirror symmetry”, SciPost Phys., 4:2 (2018), 009, arXiv: 1611.10300 | DOI
[3] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, M. Romo, “Two-sphere partition functions and Gromov–Witten invariants”, Commun. Math. Phys., 325:3 (2014), 1139–1170, arXiv: 1208.6244 | DOI | MR
[4] E. Witten, “Phases of $N=2$ theories in two-dimensions”, Nucl. Phys. B, 403:1–2 (1993), 159–222, arXiv: hep-th/9301042 | DOI | MR
[5] K. Aleshkin, A. Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold”, J. Phys. A: Math. Theor., 51:5 (2018), 055403, 18 pp., arXiv: 1706.05342 | DOI | MR
[6] K. Aleshkin, A. Belavin, “Special geometry on the 101 dimesional moduli space of the quintic threefold”, JHEP, 03 (2018), 018, 14 pp., arXiv: 1710.11609 | DOI | MR
[7] K. Aleshkin, A. Belavin, “Exact computation of the special geometry for Calabi–Yau hypersurfaces of Fermat type”, Pisma v ZhETF, 108:9–10 (2018), 723–724, arXiv: 1806.02772 | DOI
[8] K. Aleshkin, A. Belavin, A. Litvinov, “Two-sphere partition functions and Kahler potentials on CY moduli spaces”, Pisma v ZhETF, 108:10 (2018), 725 | DOI
[9] K. Aleshkin, A. Belavin, A. Litvinov, “JKLMR conjecture and Batyrev construction”, J. Stat. Mech., 2019 (2019), 034003, 9 pp., arXiv: 1812.00478 | DOI | MR
[10] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Alg.Geom., 3:3 (1994), 493–535, arXiv: alg-geom/9310003 | MR
[11] W. Lerche, C. Vafa, N. P. Warner, “Chiral rings in $N=2$ superconformal theories”, Nucl. Phys., 324:2 (1989), 427–474 | DOI | MR
[12] P. Candelas, X. C. de la Ossa, “Moduli space of Calabi–Yau manifolds”, Nucl. Phys. B, 355:2 (1991), 455–481 | DOI | MR
[13] P. Candelas, X. C. De La Ossa, P. S. Green, L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nucl. Phys. B, 359:1 (1991), 21–74 | DOI | MR
[14] P. Berglund, P. Candelas, X. C. de la Ossa, A. Font, T. Hübsch, D. Jančić, F. Quevedo, “Periods for Calabi–Yau and Landau–Ginzburg vacua”, Nucl. Phys. B, 419:2 (1994), 352–403, arXiv: hep-th/9308005 | DOI
[15] A. Chiodo, H. Iritani, Y. Ruan, “Landau–Ginzburg/Calabi–Yau correspondence. Global mirror symmetry and Orlov equivalence”, Publ. IHES, 119:1 (2013), 127–216, arXiv: 1201.0813 | DOI | MR
[16] K. Aleshkin, A. Belavin, “Special geometry on the moduli space for the two-moduli non-Fermat Calabi–Yau”, Phys. Lett. B, 776 (2018), 139–144, arXiv: 1708.08362 | DOI | MR
[17] G. Bonelli, A. Sciarappa, A. Tanzini, P. Vasko, “Vortex partition functions, wall crossing and equivariant Gromov–Witten invariants”, Commun. Math. Phys., 333:2 (2015), 717–760, arXiv: 1307.5997 | DOI | MR
[18] J. Gomis, S. Lee, “Exact Kähler potential from gauge theory and mirror symmetry”, JHEP, 04 (2013), 019, 37 pp. | DOI | MR
[19] N. Doroud, J. Gomis, “Gauge theory dynamics and Kähler potential for Calabi–Yau complex moduli”, JHEP, 12 (2013), 099, arXiv: 1309.2305 | DOI
[20] E. Gerchkovitz, J. Gomis, Z. Komargodski, “Sphere partition functions and the Zamolodchikov metric”, JHEP, 11 (2014), 001, 27 pp., arXiv: 1405.7271 | DOI | MR
[21] F. Benini, S. Cremonesi, “Partition functions of $\mathcal{N}=(2,2)$ gauge theories on S$^{2}$ and vortices”, Commun. Math. Phys., 334:3 (2015), 1483–1527, arXiv: 1206.2356 | DOI | MR
[22] N. Doroud, J. Gomis, B. Le Floch, S. Lee, “Exact results in $D=2$ supersymmetric gauge theories”, JHEP, 05 (2013), 093, 70 pp., arXiv: 1206.2606 | DOI | MR
[23] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, “Toric geometry for string theory”, Mirror Symmetry, Clay Mathematics Monographs, 1, AMS, Providence, RI, Clay Mathematics Institute, 2003, 101–142, arXiv: hep-th/0002222 | MR
[24] A. A. Belavin, B. A. Eremin, “Statisticheskaya summa $\mathcal{N}=(2,2)$ supersimmetrichnykh modelei i spetsialnaya geometriya na prostranstve modulei mnogoobrazii Kalabi–Yau”, TMF, 201:2 (2019), 222–231 | DOI | DOI | MR
[25] P. Candelas, X. C. de la Ossa, S. Katz, “Mirror symmetry for Calabi–Yau hypersurfaces in weighted and extensions of Landau–Ginzburg theory”, Nucl. Phys. B, 450:1–2 (1995), 267–290, arXiv: hep-th/9412117 | DOI | MR
[26] D. Favero, T. L. Kelly, “Derived categories of BHK mirrors”, Adv. Math., 352 (2019), 943–980, arXiv: 1602.05876 | DOI | MR