Multisolitons of the $U(N)$ generalized Heisenberg magnet model and the Yang–Baxter relation
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 208-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the binary Darboux transformation to obtain exact multisoliton solutions of the $U(N)$ generalized Heisenberg magnet model and present the solutions in terms of quasideterminants. In addition, based on using the Poisson bracket algebra, we develop a new canonical approach of the type of the $r$-matrix approach for the generalized Heisenberg magnet model.
Keywords: quasideterminant, noncommutative integrable system, binary Darboux transformation, conserved quantity.
Mots-clés : $r$-matrix
@article{TMF_2020_205_2_a2,
     author = {Z. Amjad and B. Haider},
     title = {Multisolitons of the~$U(N)$ generalized {Heisenberg} magnet model and {the~Yang{\textendash}Baxter} relation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {208--221},
     year = {2020},
     volume = {205},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a2/}
}
TY  - JOUR
AU  - Z. Amjad
AU  - B. Haider
TI  - Multisolitons of the $U(N)$ generalized Heisenberg magnet model and the Yang–Baxter relation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 208
EP  - 221
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a2/
LA  - ru
ID  - TMF_2020_205_2_a2
ER  - 
%0 Journal Article
%A Z. Amjad
%A B. Haider
%T Multisolitons of the $U(N)$ generalized Heisenberg magnet model and the Yang–Baxter relation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 208-221
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a2/
%G ru
%F TMF_2020_205_2_a2
Z. Amjad; B. Haider. Multisolitons of the $U(N)$ generalized Heisenberg magnet model and the Yang–Baxter relation. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 208-221. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a2/

[1] L. A. Takhtajan, “Integration of the continuous Heisenberg spin chain through the inverse scattering method”, Phys. Lett. A, 64:2 (1977), 235–237 | DOI | MR

[2] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl

[3] S. J. Orfanidis, “${\rm SU}(n)$ Heisenberg spin chain”, Phys. Lett. A, 75:4 (1980), 304–306 | DOI | MR

[4] A. Calini, “A note on a Bäcklund transformation for the continuous Heisenberg model”, Phys. Lett. A, 203:5–6 (1995), 333–344 | DOI | MR

[5] H. J. Shin, “Generalized Heisenberg ferromagnetic models via Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 34:14 (2001), 3169–3177 | DOI | MR

[6] G. M. Pritula, V. E. Vekslerchik, “Stationary structures in two-dimensional continuous Heisenberg ferromagnetic spin system”, J. Nonlinear Math. Phys., 10:3 (2003), 256–281 | DOI | MR

[7] J. L. Ciéslínski, J. Czarnecka, “The Darboux–Bäcklund transformation for the static 2-dimensional continuum Heisenberg chain”, J. Phys. A: Math. Gen., 39:35 (2006), 11003–11012 | DOI | MR

[8] O. Ragnisco, F. Zullo, “Continuous and discrete (classical) Heisenberg spin chain revisited”, SIGMA, 3 (2007), 033, 6 pp., arXiv: nlin/0701006 | DOI | MR | Zbl

[9] U. Saleem, M. Hassan, “Quasideterminant solutions of the generalized Heisenberg magnet model”, J. Phys. A: Math. Theor., 43:4 (2010), 045204, 12 pp. | DOI | MR

[10] N. Dorey, B. Vicedo, “A symplectic structure for string theory on integrable backgrounds”, JHEP, 03 (2007), 045, 44 pp., arXiv: hep-th/0606287 | DOI | MR

[11] G. Arutyunov, M. Zamaklar, “Linking Bäcklund and monodromy charges for strings on AdS$_5\times S^5$”, JHEP, 07 (2005), 026, 26 pp., arXiv: hep-th/0504144 | DOI | MR

[12] F. L. Alday, G. Arutyunov, A. A. Tseytlin, “On integrability of classical superstrings in AdS$_5\times S^5$”, JHEP, 07 (2005), 002, 30 pp., arXiv: hep-th/0502240 | DOI | MR

[13] A. Das, J. Maharana, A. Melikyan, M. Sato, “The algebra of transition matrices for the AdS$_5\times S^5$ superstring”, JHEP, 12 (2004), 055, 21 pp., arXiv: hep-th/0411200 | DOI | MR

[14] G. Arutyunov, S. Frolov, “Integrable Hamiltonian for classical strings on AdS$_5\times S^5$”, JHEP, 02 (2005), 059, 29 pp. | DOI | MR

[15] M. Hatsuda, K. Yoshida, “Classical integrability and super Yangian of superstring on AdS$_5\times S^5$”, Adv. Theor. Math. Phys., 9:5 (2005), 703–728 | DOI | MR

[16] U. Saleem, M. Hassan, “Lax pair and Darboux transformation of noncommutative $U(N)$ principal chiral model”, J. Phys. A: Math. Gen., 39:37 (2006), 11683–11698, arXiv: hep-th/0609127 | DOI | MR

[17] M. Hamanaka, “Notes on exact multi-soliton solutions of noncommutative integrable hierarchies”, JHEP, 02 (2007), 094, 17 pp., arXiv: hep-th/0610006 | DOI | MR

[18] C. R. Gilson, J. J. C. Nimmo, Y. Ohta, “Quasideterminant solutions of a non-Abelian Hirota–Miwa equation”, J. Phys. A: Math. Theor., 40:42 (2007), 12607–12617, arXiv: nlin/0702020 | DOI | MR

[19] C. R. Gilson, J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation”, J. Phys. A: Math. Theor., 40:14 (2007), 3839–3850, arXiv: 0711.3733 | DOI | MR

[20] U. Saleem, M. Hassan, M. Siddiq, “Non-local continuity equations and binary Darboux transformation of noncommutative (anti) self-dual Yang–Mills equations”, J. Phys. A: Math. Theor., 40:19 (2007), 5205–5217 | DOI | MR

[21] I. C. Cabrera-Carnero, M. Moriconi, “Noncommutative integrable field theories in 2d”, Nucl. Phys. B, 673:3 (2003), 437–454, arXiv: hep-th/0211193 | DOI | MR

[22] U. Saleem, M. Siddiq, M. Hassan, “On noncommutative sinh-Gordon equation”, Chin. Phys. Lett., 22:5 (2005), 1076–1078, arXiv: hep-th/0605093 | DOI

[23] B. Haider, M. Hassan, “The $U(N)$ chiral model and exact multi-solitons”, J. Phys. A: Math. Theor., 41:25 (2008), 255202, 17 pp. | DOI | MR

[24] S. Minwalla, M. V. Raamsdonk, N. Seiberg, “Noncommutative perturbative dynamics”, JHEP, 02 (2000), 020, 31 pp., arXiv: hep-th/9912072 | DOI | MR

[25] N. Seiberg, E. Witten, “String theory and noncommutative geometry”, JHEP, 09 (1999), 032, 93 pp., arXiv: hep-th/9908142 | DOI | MR

[26] K. Furuta, T. Inami, “Ultraviolet property of noncommutative Wess–Zumino–Witten model”, Modern Phys. Lett. A, 15:15 (2000), 997–1002, arXiv: hep-th/0004024 | DOI | MR

[27] S. G. Rajeev, G. Sparano, P. Vitale, “Alternative canonical formalism for the Wess–Zumino–Witten model”, Internat. J. Modern Phys. A, 9:31 (1994), 5469–5487, arXiv: hep-th/9312178 | DOI | MR

[28] S. G. Rajeev, A. Stern, P. Vitale, “Integrability of the Wess–Zumino–Witten model as a non-ultralocal theory”, Phys. Lett. B, 388:4 (1996), 769–775, arXiv: hep-th/9602149 | DOI | MR

[29] M. Jimbo (ed.), Yang–Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics, 10, World Sci., Singapore, 1989 | DOI | MR

[30] J.-M. Maillet, “New integrable canonical structures in two-dimensional models”, Nucl. Phys. B, 269:1 (1986), 54–76 | DOI | MR

[31] H. J. de Vega, H. Eichenherr, J. M. Maillet, “Yang–Baxter algebras of monodromy matrices in integrable quantum field theories”, Nucl. Phys. B, 240:3 (1984), 377–399 | DOI | MR

[32] J.-M. Maillet, “Kac–Moody algebra and extended Yang–Baxter relations in the $O(N)$ nonlinear $\sigma$-model”, Phys. Lett. B, 162:1–3 (1985), 137–142 | DOI | MR

[33] J.-M. Maillet, “Hamiltonian structures for integrable classical theories from graded Kac–Moody algebras”, Phys. Lett. B, 167:4 (1986), 401–405 | DOI

[34] I. Cherednik, Basic Methods of Soliton Theory, Advanced Series in Mathematical Physics, 25, World Sci., Singapore, 1996 | DOI | MR

[35] Dzh. Khamfris, Vvedenie v teoriyu algebr Li i ikh predstavlenii, MTsNMO, M., 2003

[36] T. Curtright, C. K. Zachos, “Supersymmetry and the nonlocal Yangian deformation symmetry”, Nucl. Phys. B, 402:3 (1993), 604–612, arXiv: hep-th/9210060 | DOI | MR