Multisolitons of the~$U(N)$ generalized Heisenberg magnet model and the~Yang--Baxter relation
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 208-221
Voir la notice de l'article provenant de la source Math-Net.Ru
We use the binary Darboux transformation to obtain exact multisoliton solutions of the $U(N)$ generalized Heisenberg magnet model and present the solutions in terms of quasideterminants. In addition, based on using the Poisson bracket algebra, we develop a new canonical approach of the type of the $r$-matrix approach for the generalized Heisenberg magnet model.
Keywords:
quasideterminant, noncommutative integrable system, binary Darboux transformation, conserved quantity.
Mots-clés : $r$-matrix
Mots-clés : $r$-matrix
@article{TMF_2020_205_2_a2,
author = {Z. Amjad and B. Haider},
title = {Multisolitons of the~$U(N)$ generalized {Heisenberg} magnet model and {the~Yang--Baxter} relation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {208--221},
publisher = {mathdoc},
volume = {205},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a2/}
}
TY - JOUR AU - Z. Amjad AU - B. Haider TI - Multisolitons of the~$U(N)$ generalized Heisenberg magnet model and the~Yang--Baxter relation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 208 EP - 221 VL - 205 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a2/ LA - ru ID - TMF_2020_205_2_a2 ER -
%0 Journal Article %A Z. Amjad %A B. Haider %T Multisolitons of the~$U(N)$ generalized Heisenberg magnet model and the~Yang--Baxter relation %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 208-221 %V 205 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a2/ %G ru %F TMF_2020_205_2_a2
Z. Amjad; B. Haider. Multisolitons of the~$U(N)$ generalized Heisenberg magnet model and the~Yang--Baxter relation. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 208-221. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a2/