Reductions of the strict KP hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 190-207 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $R$ be a commutative complex algebra and $\partial$ be a $\mathbb{C}$-linear derivation of $R$ such that all powers of $\partial$ are $R$-linearly independent. Let $R[\partial]$ be the algebra of differential operators in $\partial$ with coefficients in $R$ and $Psd$ be its extension by the pseudodifferential operators in $\partial$ with coefficients in $R$. In the algebra $R[\partial]$, we seek monic differential operators $\mathbf{M}_n$ of order $n\ge2$ without a constant term satisfying a system of Lax equations determined by the decomposition of $Psd$ into a direct sum of two Lie algebras that lies at the basis of the strict KP hierarchy. Because this set of Lax equations is an analogue for this decomposition of the $n$-KdV hierarchy, we call it the strict $n$-KdV hierarchy. The system has a minimal realization, which allows showing that it has homogeneity properties. Moreover, we show that the system is compatible, i.e., the strict differential parts of the powers of $M=(\mathbf{M}_n)^{1/n}$ satisfy zero-curvature conditions, which suffice for obtaining the Lax equations for $\mathbf{M}_n$ and, in particular, for proving that the $n$th root $M$ of $\mathbf{M}_n$ is a solution of the strict KP theory if and only if $\mathbf{M}_n$ is a solution of the strict $n$-KdV hierarchy. We characterize the place of solutions of the strict $n$-KdV hierarchy among previously known solutions of the strict KP hierarchy.
Keywords: strict KP hierarchy, reduction, minimal realization, scaling transformation.
@article{TMF_2020_205_2_a1,
     author = {G. F. Helminck and E. A. Panasenko},
     title = {Reductions of the~strict {KP} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {190--207},
     year = {2020},
     volume = {205},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a1/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - E. A. Panasenko
TI  - Reductions of the strict KP hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 190
EP  - 207
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a1/
LA  - ru
ID  - TMF_2020_205_2_a1
ER  - 
%0 Journal Article
%A G. F. Helminck
%A E. A. Panasenko
%T Reductions of the strict KP hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 190-207
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a1/
%G ru
%F TMF_2020_205_2_a1
G. F. Helminck; E. A. Panasenko. Reductions of the strict KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 190-207. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a1/

[1] I. M. Gelfand, L. A. Dikii, “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz i ego pril., 10:4 (1976), 13–29 | DOI | MR | Zbl

[2] L. Fehér, J. Harnad, I. Marshall, “Generalized Drinfeld–Sokolov reductions and KdV type hierarchies”, Commun. Math. Phys., 154:1 (1993), 181–214, arXiv: hep-th/9210037 | DOI | MR

[3] G. F. Khelmink, E. A. Panasenko, “Geometricheskie resheniya strogoi ierarkhii Kadomtseva–Petviashvili”, TMF, 198:1 (2019), 54–78 | DOI | DOI

[4] B. A. Kuperschmidt, G. Wilson, “Modifying Lax equations and the second Hamiltonian structure”, Invent. Math., 62:3 (1981), 403–436 | DOI | MR

[5] G. F. Khelmink, A. G. Khelmink, E. A. Panasenko, “Integriruemye deformatsii v algebre psevdodifferentsialnykh operatorov s tochki zreniya algebraicheskoi teorii Li”, TMF, 174:1 (2013), 154–176 | DOI | DOI | MR | Zbl

[6] A. Pressli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR | MR

[7] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. IHES, 61 (1985), 5–65 | DOI | MR