Jacobi structures on real two- and three-dimensional Lie groups and their Jacobi–Lie systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 171-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the adjoint representations of Lie algebras, we classify all Jacobi structures on real two- and three-dimensional Lie groups. We also study Jacobi–Lie systems on these real low-dimensional Lie groups and illustrate our results with examples of Jacobi–Lie Hamiltonian systems on some real two- and three-dimensional Lie groups.
Mots-clés : Lie group, Jacobi structure
Keywords: Lie system, Jacobi–Lie system.
@article{TMF_2020_205_2_a0,
     author = {H. Amirzadeh-Fard and Gh. Haghighatdoost and P. Kheradmandynia and A. Rezaei-Aghdam},
     title = {Jacobi structures on real two- and three-dimensional {Lie} groups and their {Jacobi{\textendash}Lie} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--189},
     year = {2020},
     volume = {205},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a0/}
}
TY  - JOUR
AU  - H. Amirzadeh-Fard
AU  - Gh. Haghighatdoost
AU  - P. Kheradmandynia
AU  - A. Rezaei-Aghdam
TI  - Jacobi structures on real two- and three-dimensional Lie groups and their Jacobi–Lie systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 171
EP  - 189
VL  - 205
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a0/
LA  - ru
ID  - TMF_2020_205_2_a0
ER  - 
%0 Journal Article
%A H. Amirzadeh-Fard
%A Gh. Haghighatdoost
%A P. Kheradmandynia
%A A. Rezaei-Aghdam
%T Jacobi structures on real two- and three-dimensional Lie groups and their Jacobi–Lie systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 171-189
%V 205
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a0/
%G ru
%F TMF_2020_205_2_a0
H. Amirzadeh-Fard; Gh. Haghighatdoost; P. Kheradmandynia; A. Rezaei-Aghdam. Jacobi structures on real two- and three-dimensional Lie groups and their Jacobi–Lie systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 2, pp. 171-189. http://geodesic.mathdoc.fr/item/TMF_2020_205_2_a0/

[1] E. Vessiot, “Sur une classe d'équations différentielles”, Ann. Sci. École Norm. Sup. Ser. 3, 10 (1893), 53–64 | DOI | MR

[2] A. Guldberg, “Sur les équations différentielles ordinaires qui possèdent un système fondamental d'intégrales”, C. R. Math. Acad. Sci. Paris, 116 (1893), 964–965

[3] S. Lie, G. Scheffers, Vorlesungen über continuierliche Gruppen mit Geometrischen und anderen Anwendungen, Teubner, Leipzig, 1893 | DOI | MR

[4] J. F. Cariñena, J. Grabowski, G. Marmo, Lie–Scheffers Systems: a Geometric Approach, Bibliopolis, Naples, 2000 | MR

[5] A. Ballesteros, A. Blasco, F. Herranz, J. de Lucas, C. Sardón, “Lie–Hamilton systems on the plane: properties, classification and applications”, J. Differ. Equ., 258:8 (2015), 2873–2907 | DOI | MR

[6] A. Ballesteros, J. F. Cariñena, F. Herranz, J. de Lucas, C. S. Sardón, “From constants of motion to superposition rules for Lie–Hamilton systems”, J. Phys. A: Math. Theor., 46:28 (2013), 285203, 25 pp. | DOI | MR

[7] A. Blasco, F. J. Herranz, J. de Lucas, C. Sardón, “Lie–Hamilton systems on the plane: applications and superposition rules”, J. Phys. A: Math. Theor., 48:34 (2015), 345202, 35 pp. | DOI | MR

[8] J. F. Cariñena, J. Clemente-Gallardo, J. A. Jover-Galtier, J. de Lucas, Lie systems and Schödinger equations, arXiv: 1611.05630

[9] J. F. Cariñena, J. de Lucas, C. Sardón, “Lie–Hamilton systems: theory and applications”, Internat. J. Geom. Methods Modern Phys., 10:9 (2013), 1350047, 25 pp., arXiv: 1211.6991 | DOI | MR

[10] R. Flores-Espinoza, “Periodic first integrals for Hamiltonian systems of Lie type”, Internat. J. Geom. Methods Modern Phys., 8:6 (2011), 1169–1177 | DOI | MR

[11] J. F. Cariñena, J. Grabowski, J. de Lucas, C. Sardón, “Dirac–Lie systems and Schwarzian equations”, J. Differ. Equ., 257:7 (2014), 2303–2340 | DOI | MR

[12] J. de Lucas, S. Vilariño, “$k$-Symplectic Lie systems: theory and applications”, J. Differ. Equ., 258:6 (2015), 2221–2255, arXiv: 1404.1596 | DOI | MR

[13] J. F. Cariñena, J. de Lucas, “Lie systems: theory, generalisations, and applications”, Dissertationes Math., 479 (2011), 1–162 | DOI | MR

[14] F. J. Herranz, J. de Lucas, C. Sardón, “Jacobi–Lie systems: fundamentals and low-dimensional classification”, AIMS Proc., 2015{(special)} (2015), 605–614 | DOI | MR

[15] H. Amirzadeh-Fard, Gh. Haghighatdoost, A. Rezaei-Aghdam, Jacobi–Lie Hamiltonian systems on real low-dimensional Jacobi–Lie groups and their Lie symmetries, arXiv: 1905.4512

[16] J. M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics, 218, Springer, New York, 2003 | DOI | MR

[17] R. Abraham, J. E. Marsden, Foundations of Mechanics, AMS Chelsea Publishing, 364, AMS, Providence, RI, 1987 | DOI

[18] J. F. Cariñena, J. Grabowski, G. Marmo, “Superposition rules, Lie theorem and partial differential equations”, Rep. Math. Phys., 60:2 (2007), 237–258 | DOI | MR

[19] A. Lichnerowicz, “Les variétés de Jacobi et leurs algébres de Lie associées”, J. Math. Pures Appl., 57:4 (1978), 453–488 | MR

[20] A. A. Kirillov, “Lokalnye algebry Li”, UMN, 31:4(190) (1976), 57–76 | DOI | MR | Zbl

[21] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118, Birkhäuser, Basel, 1994 | DOI | MR

[22] F. Hass, “Jacobi structures in $\mathbb{R}^3$”, J. Math. Phys., 46:10 (2005), 102703, 11 pp., arXiv: math-ph/0505056 | DOI | MR

[23] M. Nakahara, Geometry, Topology and Physics, CRC Press, Boca Raton, 2003 | DOI | MR

[24] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1988 | MR | MR | Zbl

[25] J. Patera, P. Winternitz, “Subalgebras of real three- and four-dimensional Lie algebras”, J. Math. Phys., 18:7 (1977), 1449–1455 | DOI | MR | Zbl

[26] A. Rezaei-Aghdam, M. Hemmati, A. R. Rastkar, “Classification of real three-dimensional Lie bialgebras and their Poisson–Lie groups”, J. Phys. A: Math. Gen., 38:18 (2005), 3981–3994, arXiv: math-ph/0412092 | DOI | MR | Zbl

[27] B. Mojaveri, A. Rezaei-Aghdam, “4+1 dimensional homogeneous anisotropic string cosmological models”, Internat. J. Modern Phys. A, 27:7 (2012), 1250032, 32 pp., arXiv: 1106.1795 | DOI | MR