Phase transitions for models with a continuum set of spin values on
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 146-155 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model with nearest-neighbor interactions and the set $[0,1]$ of spin values on a Bethe lattice {(}Cayley tree{\rm)} of arbitrary order. This model depends on a continuous parameter $\theta$ and is a generalization of known models. For all values of $\theta$, we give a complete description of the set of translation-invariant Gibbs measures of this model.
Keywords: Cayley tree, spin value, Gibbs measure, Hammerstein's equation, fixed point.
@article{TMF_2020_205_1_a9,
     author = {Yu. Kh. Eshkabilov and G. I. Botirov and F. H. Haydarov},
     title = {Phase transitions for models with a~continuum set of spin values on},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {146--155},
     year = {2020},
     volume = {205},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a9/}
}
TY  - JOUR
AU  - Yu. Kh. Eshkabilov
AU  - G. I. Botirov
AU  - F. H. Haydarov
TI  - Phase transitions for models with a continuum set of spin values on
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 146
EP  - 155
VL  - 205
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a9/
LA  - ru
ID  - TMF_2020_205_1_a9
ER  - 
%0 Journal Article
%A Yu. Kh. Eshkabilov
%A G. I. Botirov
%A F. H. Haydarov
%T Phase transitions for models with a continuum set of spin values on
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 146-155
%V 205
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a9/
%G ru
%F TMF_2020_205_1_a9
Yu. Kh. Eshkabilov; G. I. Botirov; F. H. Haydarov. Phase transitions for models with a continuum set of spin values on. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 146-155. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a9/

[1] S. A. Pirogov, Ya. G. Sinai, “Fazovye diagrammy klassicheskikh reshetchatykh sistem”, TMF, 25:3 (1975), 358–369 ; “Фазовые диаграммы классических решетчатых систем (Продолжение)”, 26:1 (1976), 61–76 | DOI | MR | DOI | MR

[2] R. Kotecký, S. B. Shlosman, “First-order phase transition in large entropy lattice models”, Commun. Math. Phys., 83:4 (1982), 493–515 | DOI | MR

[3] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[4] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice”, J. Statist. Phys., 79:1–2 (1995), 473–482 | DOI | MR | Zbl

[5] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR | MR

[6] F. Spitzer, “Markov random fields on an infinite tree”, Ann. Probab., 3:3 (1975), 387–398 | DOI | MR

[7] Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, Math. Phys. Anal. Geom., 16:1 (2013), 1–17 | DOI | MR | Zbl

[8] Yu. Kh. Eshkabilov, Sh. D. Nodirov, F. H. Haydarov, “Positive fixed points of quadratic operators and Gibbs measures”, Positivity, 20:4 (2016), 929–943 | DOI | MR | Zbl

[9] U. A. Rozikov, F. H. Haydarov, “Periodic Gibbs measures for models with uncountable set of spin values on a Cayley tree”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 18:1 (2015), 1550006, 22 pp. | DOI | MR

[10] U. A. Rozikov, Yu. Kh. Eshkabilov, “On models with uncountable set of spin values on a Cayley tree: Integral equations”, Math. Phys. Anal. Geom., 13:3 (2010), 275–286 | DOI | MR | Zbl

[11] U. A. Rozikov, F. Kh. Khaidarov, “Modeli s chetyrmya konkuriruyuschimi vzaimodeistviyami i s neschetnym mnozhestvom znachenii spina na dereve Keli”, TMF, 191:3 (2017), 503–517 | DOI | DOI | MR

[12] Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, J. Statist. Phys., 147:4 (2012), 779–794 | DOI | MR | Zbl

[13] Yu. Kh. Eshkabilov, U. A. Rozikov, G. I. Botirov, “Phase transition for a model with uncountable set of spin values on Cayley tree”, Lobachevskii J. Math., 34:3 (2013), 256–263 | DOI | MR

[14] B. Jahnel, C. Külske, G. I. Botirov, “Phase transition and critical value of nearest-neighbor system with uncountable local state space on Cayley tree”, Math. Phys. Anal. Geom., 17:3–4 (2014), 323–331 | DOI | MR | Zbl

[15] G. I. Botirov, “A model with uncountable set of spin values on a Cayley tree: phase transitions”, Positivity, 21 (2017), 955–961 | DOI | MR