@article{TMF_2020_205_1_a7,
author = {A. K. Behera and B. Khirali and U. Laha and J. Bhoi},
title = {Construction of an~equivalent energy-dependent potential by {a~Taylor} series expansion},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {124--136},
year = {2020},
volume = {205},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a7/}
}
TY - JOUR AU - A. K. Behera AU - B. Khirali AU - U. Laha AU - J. Bhoi TI - Construction of an equivalent energy-dependent potential by a Taylor series expansion JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 124 EP - 136 VL - 205 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a7/ LA - ru ID - TMF_2020_205_1_a7 ER -
%0 Journal Article %A A. K. Behera %A B. Khirali %A U. Laha %A J. Bhoi %T Construction of an equivalent energy-dependent potential by a Taylor series expansion %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 124-136 %V 205 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a7/ %G ru %F TMF_2020_205_1_a7
A. K. Behera; B. Khirali; U. Laha; J. Bhoi. Construction of an equivalent energy-dependent potential by a Taylor series expansion. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 124-136. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a7/
[1] R. A. Arndt, L. D. Roper, R. A. Bryan, R. B. Clark, B. J. Ver West, P. Signell, “Nucleon-nucleon partial-wave analysis to 1 GeV”, Phys. Rev. D, 28:1 (1983), 97–122 | DOI
[2] R. A. Arndt, J. S. Hyslop, L. D. Roper, “Nucleon-nucleon partial-wave analysis to 1100 MeV”, Phys. Rev. D, 35:1 (1987), 128–144 | DOI
[3] R. A. Arndt, L. D. Roper, R. L. Workman, M. W. McNaughton, “Nucleon-nucleon partial-wave analysis to 1.6 GeV”, Phys. Rev. D, 45:11 (1992), 3995–4001 | DOI
[4] R. A. Arndt, R. L. Workman, M. M. Pavan, “Pion-nucleon partial-wave analysis with fixed-$t$ dispersion relation constraints”, Phys. Rev. C, 49:5 (1994), 2729–2734 | DOI
[5] R. A. Arndt, I. I. Strakovsky, R. L. Workman, “Updated analysis of $NN$ elastic scattering data to 1.6 GeV”, Phys. Rev. C, 50:6 (1994), 2731–2741, arXiv: nucl-th/9407035 | DOI
[6] R. A. Arndt, C. H. Oh, I. I Strakovsky, R. L. Workman, F. Dohrmann, “Nucleon-nucleon elastic scattering analysis to 2.5 GeV”, Phys. Rev. C, 56:6 (1997), 3005–3013, arXiv: nucl-th/9706003 | DOI
[7] J. Bystricky, C. Lechanoine-Leluc, F. Lehar, “Nucleon-nucleon phase shift analysis”, J. Phys. France, 48:2 (1987), 199–226 | DOI
[8] C. Lechanoine-Leluc, F. Lehar, P. Winternitz, J. Bystricky, “Critical review of the present experimental status of neutron-proton scattering up to 1 GeV”, J. Phys. France, 48:6 (1987), 985–1008 | DOI
[9] F. Lehar, C. Lechanoine-Leluc, J. Bystricky, “An energy dependent phase shift analysis of proton-proton scattering between 700 and 1300 Mev”, J. Phys. France, 48:8 (1987), 1273–1290 | DOI
[10] J. Bystricky, C. Lechanoine-Leluc, F. Lehar, “Phase shift analyses of pp elastic scattering at fixed energies between 0.83 and 1.8 GeV”, J. Phys. France, 51:24 (1990), 2747–2776 | DOI
[11] C. Lechanoine-Leluc, F. Lehar, “Nucleon-nucleon elastic scattering and total cross sections”, Rev. Modern Phys., 65:1 (1993), 47–86 | DOI
[12] C. E. Allgower, J. Ball, M. Beddo et al., “The pp elastic scattering analyzing power measured with the polarized beam and the unpolarized target between 1.98 and 2.80 GeV”, Nucl. Phys. A, 637:2 (1998), 231–242 | DOI
[13] C. E. Allgower, J. Ball, L. S. Barabash et al., “Angular dependence of the pp elastic-scattering analyzing power between 0.8 and 2.8 GeV. I. Results for 1.80–2.24 GeV”, Phys. Rev. C, 60:5 (1999), 054001, 23 pp. | DOI
[14] C. E. Allgower, J. Ball, M. E. Beddo et al., “Angular dependence of the pp elastic-scattering analyzing power between 0.8 and 2.8 GeV. II. Results for higher energies”, Phys. Rev. C, 60:5 (1999), 054002, 14 pp. | DOI
[15] C. E. Allgower, J. Ball, L. S. Barabash et al., “Angular dependence of the pp elastic scattering spin correlation parameter $A_{00nn}$ between 0.8 and 2.8 GeV: Results for 1.80–2.24 GeV”, Phys. Rev. C, 62:6 (2000), 064001 | DOI
[16] D. V. Bugg, “Nucleon-nucleon physics up to 1 GeV”, Ann. Rev. Nucl. Part. Phys. Sci., 35:35 (1985), 295–320 | DOI
[17] R. Vinh Mau, C. Semay, B. Loiseau, M. Lacombe, “Nuclear forces and quark degrees of freedom”, Phys. Rev. Lett., 67:11 (1991), 1392–1394 | DOI
[18] F. Gross, J. W. van Orden, K. Holinde, “Relativistic one-boson-exchange model for the nucleon-nucleon interaction”, Phys. Rev. C, 45:5 (1992), 2094–2132 | DOI
[19] R. Machleidt, “High-precision, charge-dependent Bonn nucleon-nucleon potential”, Phys. Rev. C, 63:2 (2001), 024001, 32 pp., arXiv: nucl-th/0006014 | DOI
[20] S. A. Zaitsev, E. I. Kramar, “$NN$ potentials from inverse scattering in the $J$-matrix approach”, J. Phys. G: Nucl. Part. Phys., 27:10 (2001), 2037–2050, arXiv: nucl-th/0103010 | DOI
[21] B. R. Wiringa, V. G. J. Stoks, R. Schiavilla, “Accurate nucleon-nucleon potential with charge-independence breaking”, Phys. Rev. C, 51:1 (1995), 38–51 | DOI
[22] A. M. Shirokov, A. I. Mazur, S. A. Zaytsev, J. P. Vary, T. A. Weber, “Nucleon-nucleon interaction in the $J$-matrix inverse scattering approach and few-nucleon systems”, Phys. Rev. C, 70:4 (2004), 044005, 24 pp., arXiv: nucl-th/0312029 | DOI
[23] F. Gross, A. Stadler, “Covariant spectator theory of np scattering: Phase shifts obtained from precision fits to data below 350 MeV”, Phys. Rev. C, 78:1 (2008), 014005, 39 pp., arXiv: 0802.1552 | DOI
[24] G. R. Satchler, L. W. Owen, A. J. Elwyn, G. L. Morgan, R. L. Walter, “An optical model for the scattering of nucleons from ${}^4\mathrm{He}$ at energies below 20\;MeV”, Nucl. Phys. A, 112:1 (1968), 1–31 | DOI
[25] P. Schwandt, T. B. Clegg, W. Haeberli, “Polarization measurements and phase shifts for p-$^4$He scattering between 3 and 18 MeV”, Nucl. Phys. A, 163:2 (1971), 432–448 | DOI
[26] R. Kamouni, D. Baye, “Scattering length and effective range for collisions between light ions within a microscopic model”, Nucl. Phys. A, 791:1–2 (2007), 68–83 | DOI
[27] J. Dohet-Eraly, D. Baye, “Microscopic cluster model of ${\alpha}+n$, ${\alpha}+p$, ${\alpha}+^{3}\mathrm{He}$, and ${\alpha}+{\alpha}$ elastic scattering from a realistic effective nuclear interaction”, Phys. Rev. C, 84:1 (2011), 014604, 13 pp. | DOI
[28] S. Ali, A. R. Bodmer, “Phenomenological $\alpha$-$\alpha$ potentials”, Nucl. Phys., 80:1 (1966), 99–112 | DOI
[29] S. Ali, S. A. Afzal, “Phenomenological $\alpha$-$\alpha$ potential and the ground state of $^8$Be”, Nuovo Cimento B, 50:2 (1967), 355–358 | DOI
[30] V. I. Kukulin, V. G. Neudatchin, Yu. F. Smirnov, “Microscopically substantiated local optical potentials for scattering of light nuclei”, Nucl. Phys. A, 245:3 (1975), 429–433 | DOI
[31] B. Buck, H. Friedrich, C. Wheatley, “Local potential models for the scattering of complex nuclei”, Nucl. Phys. A, 275:1 (1977), 246–268 | DOI
[32] H. Friedrich, “Microscopic nucleus-nucleus potentials”, Phys. Rep., 74:2 (1981), 209–275 | DOI
[33] L. Marquez, “Alpha-alpha potential”, Phys. Rev. C, 28:6 (1983), 2525–2527 | DOI
[34] P. Mohr, H. Abele, R. Zwiebel et al., “Alpha scattering and capture reactions in the $A=7$ system at low energies”, Phys. Rev. C, 48:3 (1993), 1420–1427, arXiv: nucl-th/9306005 | DOI
[35] P. Mohr, H. Abele, V. Kölle, G. Staudt, H. Oberhummer, H. Krauss, “Properties of ${}^8$Be and ${}^{12}$C deduced from the folding-potential model”, Z. Phys. A, 349:3–4 (1994), 339–340, arXiv: astro-ph/9310027 | DOI
[36] E. Caurier, P. Navrátil, W. E. Ormand, J. P. Vary, “Intruder states in ${}^8$Be”, Phys. Rev. C, 64:5 (2001), 051301, 5 pp. | DOI
[37] T. Yoshida, N. Shimizu, T. Abe, T Otsuka, “Cluster structure in Monte Carlo shell model”, J. Phys.: Conf. Ser., 454 (2013), 012050, 4 pp. | DOI
[38] V. M. Datar, D. R. Chakrabarty, S. Kumar et al., “Electromagnetic transition from the $4^{+}$ to $2^{+}$ resonance in ${}^8$Be measured via the radiative capture in ${}^4$He${}+{}^4$He”, Phys. Rev. Lett., 111:6 (2013), 062502, 5 pp., arXiv: 1305.1094 | DOI
[39] S. Elhatisari, D. Lee, G. Rupak, E. Epelbaum, H. Krebs, T. A. Lähde, T. Luu, U.-G. Meißner, “Ab initio alpha-alpha scattering”, Nature, 528:7580 (2015), 111–114, arXiv: 1506.03513 | DOI
[40] B. Apagyi, W. Scheid, “Taylor expansion for the localisation of non-local potentials for coupled-channel calculations”, J. Phys. G: Nucl. Phys., 9:1 (1983), 73–84 | DOI
[41] I. F. Barna, B. Apagyi, W. Scheid, “Localization of nonlocal potentials by a Taylor expansion method”, J. Phys. G: Nucl. Part. Phys., 26:3 (2000), 323–331 | DOI
[42] Y. Yamaguchi, “Two-nucleon problem when the potential is nonlocal but separable. I”, Phys. Rev., 95:6 (1954), 1628–1634 | DOI | Zbl
[43] B. Talukdar, U. Laha, T. Sasakawa, “Green's function for motion in Coulomb-modified separable nonlocal potentials”, J. Math. Phys., 27:8 (1986), 2080–2086 | DOI | MR | Zbl
[44] U. Laha, “Off-shell Jost solution for a Coulomb-like potential”, Phys. Rev. A, 74:1 (2006), 012710, 8 pp. | DOI
[45] U. Laha, “An integral transform of Green's function, off-shell Jost solution and T-matrix for Coulomb–Yamaguchi potential in coordinate representation”, Pramana, 72 (2009), 457–472 | DOI
[46] U. Laha, B. Kundu, “On the s-wave Jost solution for Coulomb-distorted nuclear potential”, Turk. J. Phys., 34:3 (2010), 149–157 | DOI
[47] G. B. Arfken, Mathematical Methods for Physicists, Academic Press, New York, 1985 | MR
[48] F. Kalodzhero, Metod fazovykh funktsii v teorii potentsialnogo rasseyaniya, Mir, M., 1972 | Zbl
[49] B. H. J. McKellar, R. M. May, “Theory of low energy scattering by velocity dependent potentials”, Nucl. Phys., 65:2 (1965), 289–293 | DOI | MR
[50] L. G. Arnold, A. D. MacKellar, “Study of equivalent local potentials obtained from separable two-nucleon interactions”, Phys. Rev. C, 3:3 (1971), 1095–1104 | DOI
[51] J. Bhoi, U. Laha, “Potentials and phase shifts for nucleon–light nuclei systems”, Pramana, 91:6 (2018), 77, 11 pp. | DOI
[52] G. C. Sett, U. Laha, B. Talukdar, “Phase-function method for Coulomb-distorted nuclear scattering”, J. Phys. A: Math. Gen., 21:18 (1988), 3643–3657 | DOI | MR
[53] U. Laha, N. Haque, T. Nandi, B. Talukdar, “Phase-function method for elastic $\alpha$-$\alpha$ scattering”, Z. Phys. A, 332:3 (1989), 305–309 | DOI
[54] S. A. Afzal, A. A. Z. Ahmad, S. Ali, “Systematic survey of the $\alpha$-$\alpha$ interaction”, Rev. Modern Phys., 41:1 (1969), 247–273 | DOI | MR
[55] U. Laha, S. K. Das, J. Bhoi, “Localization of a nonlocal interaction”, Turk. J. Phys., 41:5 (2017), 447–462 | DOI
[56] U. Laha, B. J. Roy, B. Talukdar, “Transforms of the Coulomb Green function by the form factor of the Graz potential”, J. Phys. A: Math. Gen., 22:17 (1989), 3597–3604 | DOI
[57] B. Talukdar, U. Laha, S. R. Bhattaru, “Double Laplace transform of the Coulomb Green function”, J. Phys. A: Math. Gen., 18:7 (1985), L359–362 | DOI | MR
[58] U. Laha, J. Bhoi, “Off-shell Jost solutions for Coulomb and Coulomb-like interactions in all partial waves”, J. Math. Phys., 54:1 (2013), 013514, 22 pp. | DOI | MR | Zbl
[59] U. Laha, J. Bhoi, “Integral transform of the Coulomb Green's function by the Hankel function and off-shell scattering”, Phys. Rev. C, 88:6 (2013), 064001, 10 pp. | DOI | MR
[60] U. Lakha, S. Rei, S. Panda, Ya. Bkhoi, “Preobrazovaniya Laplasa khyultenovskoi funktsii Grina i ikh primenenie k zadache potentsialnogo rasseyaniya”, TMF, 193:1 (2017), 104–114 | DOI | DOI | MR
[61] B. Talukdar, G. C. Sett, S. R. Bhattaru, “On the localisation of separable non-local potentials”, J. Phys. G: Nucl. Part. Phys., 11:5 (1985), 591–602 | DOI