Virasoro symmetries of multicomponent Gelfand–Dickey systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 102-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the additional symmetries and $\tau$-functions of multicomponent Gelfand–Dickey hierarchies, which include classical integrable systems such as the multicomponent Korteweg–de Vries and Boussinesq hierarchies. Using various reductions, we derive B- and C-type multicomponent Gelfand–Dickey hierarchies. We show that not all flows of their additional symmetries survive. We find that the generators of the additional symmetries of the B- and C-type multicomponent Gelfand–Dickey hierarchies differ but the forms of their additional flows are the same.
Keywords: multicomponent Gelfand–Dickey hierarchy, additional symmetry, string equation, $\tau$-function, Virasoro constraint.
@article{TMF_2020_205_1_a6,
     author = {Ling An and Chuanzhong Li},
     title = {Virasoro symmetries of multicomponent {Gelfand{\textendash}Dickey} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {102--123},
     year = {2020},
     volume = {205},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a6/}
}
TY  - JOUR
AU  - Ling An
AU  - Chuanzhong Li
TI  - Virasoro symmetries of multicomponent Gelfand–Dickey systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 102
EP  - 123
VL  - 205
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a6/
LA  - ru
ID  - TMF_2020_205_1_a6
ER  - 
%0 Journal Article
%A Ling An
%A Chuanzhong Li
%T Virasoro symmetries of multicomponent Gelfand–Dickey systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 102-123
%V 205
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a6/
%G ru
%F TMF_2020_205_1_a6
Ling An; Chuanzhong Li. Virasoro symmetries of multicomponent Gelfand–Dickey systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 102-123. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a6/

[1] I. M. Gelfand, L. A. Dikii, “Drobnye stepeni operatorov i gamiltonovy sistemy”, Funkts. analiz i ego pril., 10:4 (1976) | DOI | MR | Zbl

[2] L. A. Dickey, “Additional symmetries of KP, grassmannian, and the string equation”, Modern Phys. Lett. A, 8:13 (1993), 1259–1272, arXiv: hep-th/9204092 | DOI | MR

[3] Z. Zheng, J. He, Y. Cheng, “Bäcklund transformation of the noncommutative Gelfand–Dickey hierarchy”, JHEP, 02 (2004), 069, 11 pp. | DOI

[4] J. M. Figueroa-O'Farrill, E. Ramos, “$W$-superalgebras from supersymmetric Lax operators”, Phys. Lett. B, 262:2–3 (1991), 265–270 | DOI | MR

[5] C. Li, “Symmetries and reductions on the noncommutative Kadomtsev–Petviashvili and Gelfand–Dickey hierarchies”, J. Math. Phys., 59:2 (2018), 123503, 11 pp., arXiv: 1907.04169 | DOI | MR

[6] L. Fehér, I. Marshall, “Extensions of the matrix Gelfand–Dickey hierarchy from generalized Drinfeld–Sokolov reduction”, Commun. Math. Phys., 183:2 (1997), 423–461 | DOI | MR

[7] L. Haine, P. Iliev, “The bispectral property of a $q$-deformation of the Schur polynomials and the $q$-KdV hierarchy”, J. Phys. A: Math. Gen., 30:20 (1997), 7217–7227, arXiv: hep-th/9503217 | DOI | MR

[8] P. Etingof, I. Gelfand, V. Retakh, “Factorization of differential operators, quasideterminants, and nonabelian Toda field equations”, Math. Res. Lett., 4:3 (1997), 413–425, arXiv: q-alg/9701008 | DOI | MR

[9] J.-S. He, Y.-H. Li, Y. Cheng, “$q$-Deformed Gelfand–Dickey hierarchy and the determinant representation of its gauge transformation”, Chinese Ann. Math. Ser. A, 3 (2004), 373–382 | MR

[10] J. L. Miramontes, “Tau-functions generating the conservation laws for generalized integrable hierarchies of KdV and affine Toda type”, Nucl. Phys. B, 547:3 (2012), 623–663 | DOI | MR

[11] S. P. Novikov, “Theory of the string equation in the double-scaling limit of $1$-matrix models”, Internat. J. Modern Phys. B, 10:18–19 (1996), 2249–2271 | DOI | MR

[12] M. A. Awada, S. J. Sin, “The string difference equation of the $D=1$ matrix model and $W_{1+\infty}$ symmetry of the KP hierarchy”, Internat. J. Modern Phys. A, 7:20 (1992), 4791–4802 | DOI | MR

[13] J. van de Leur, “KdV type hierarchies, the string equation and $W_{1+\infty}$ constraints”, J. Geom. Phys., 17:2 (1995), 95–124, arXiv: hep-th/9403080 | DOI | MR

[14] S. Panda, S. Roy, “The Lax operator approach for the Virasoro and the $W$-constraints in the generalized KdV hierarchy”, Internat. J. Modern Phys. A, 8:20 (1993), 3457–3478, arXiv: hep-th/9208065 | DOI | MR

[15] H. Aratyn, E. Nissimov, S. Pacheva, “Virasoro symmetry of constrained KP hierarchies”, Phys. Lett. A, 228:3 (1996), 164–175, arXiv: hep-th/9602068 | DOI | MR

[16] A. Y. Orlov, E. I. Shul'man, “Additional symmetries for integrable and conformal algebra representation”, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI | MR

[17] L. A. Dickey, “On additional symmetries of the KP hierarchy and Sato's Bäcklund transformation”, Commun. Math. Phys., 167:1 (1995), 227–233, arXiv: hep-th/9312015 | MR | Zbl

[18] H. Aratyn, E. Nissimov, S. Pacheva, “Supersymmetric Kadomtsev–Petviashvili hierarchy: “Ghost” symmetry structure, reductions, and Darboux–Bäcklund solutions”, J. Math. Phys., 40:6 (1999), 2922–2932, arXiv: solv-int/9801021 | DOI | MR

[19] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\det\overline{\partial _J}$ and Segal–Wilson $\tau$-function”, Problems of Modern Quantum Field Theory (Alushta USSR, April 24 – May 5, 1989), Research Reports in Physics, eds. A. A. Belavin, A. U. Klimyk, A. B. Zamolodchikov, Springer, Berlin, 1989, 86–106 | MR

[20] A. Yu. Orlov, “Vertex operator, $\bar{\partial}$-problem, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, USSR, 13–25 April, 1987), ed. V. Baryakhta, World Sci., Singapore, 1988, 116–134 | MR | Zbl

[21] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, “Matrix models of two-dimensional gravity and Toda theory”, Nucl. Phys. B, 357:2–3 (1991), 565–618 | DOI | MR

[22] M. Kontsevich, “Intersection theory on the moduli space of curves and matrix Airy function”, Commun. Math. Phys., 147:1 (1992), 1–23 | DOI | MR

[23] A. Yu. Orlov, E. I. Shulman, “O dopolnitelnykh simmetriyakh nelineinogo uravneniya Shredingera”, TMF, 64:2 (1985), 323–328 | DOI | MR | Zbl

[24] T. Tsuda, “From KP/UC hierarchies to Painlevé equations”, Internat. J. Math., 23:5 (2012), 1250010, 59 pp. | DOI | MR