Two-component generalized Ragnisco--Tu equation and the~Riemann--Hilbert problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 68-83
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the Riemann–Hilbert approach, we investigate the two-component generalized Ragnisco–Tu equation. The modified equation is integrable in the sense that a Lax pair exists, but its explicit solutions have some distinctive properties. We show that the explicit one-wave solution is unstable and the two-wave solution preserves only the phase shift but not the wave shape after collision.
Keywords:
Ragnisco–Tu equation, Riemann–Hilbert approach, unstable solution.
@article{TMF_2020_205_1_a4,
author = {Linlin Wang and Caiqin Song and Junyi Zhu},
title = {Two-component generalized {Ragnisco--Tu} equation and {the~Riemann--Hilbert} problem},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {68--83},
publisher = {mathdoc},
volume = {205},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/}
}
TY - JOUR AU - Linlin Wang AU - Caiqin Song AU - Junyi Zhu TI - Two-component generalized Ragnisco--Tu equation and the~Riemann--Hilbert problem JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 68 EP - 83 VL - 205 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/ LA - ru ID - TMF_2020_205_1_a4 ER -
%0 Journal Article %A Linlin Wang %A Caiqin Song %A Junyi Zhu %T Two-component generalized Ragnisco--Tu equation and the~Riemann--Hilbert problem %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 68-83 %V 205 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/ %G ru %F TMF_2020_205_1_a4
Linlin Wang; Caiqin Song; Junyi Zhu. Two-component generalized Ragnisco--Tu equation and the~Riemann--Hilbert problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 68-83. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/