Two-component generalized Ragnisco--Tu equation and the~Riemann--Hilbert problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 68-83

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Riemann–Hilbert approach, we investigate the two-component generalized Ragnisco–Tu equation. The modified equation is integrable in the sense that a Lax pair exists, but its explicit solutions have some distinctive properties. We show that the explicit one-wave solution is unstable and the two-wave solution preserves only the phase shift but not the wave shape after collision.
Keywords: Ragnisco–Tu equation, Riemann–Hilbert approach, unstable solution.
@article{TMF_2020_205_1_a4,
     author = {Linlin Wang and Caiqin Song and Junyi Zhu},
     title = {Two-component generalized {Ragnisco--Tu} equation and {the~Riemann--Hilbert} problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--83},
     publisher = {mathdoc},
     volume = {205},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/}
}
TY  - JOUR
AU  - Linlin Wang
AU  - Caiqin Song
AU  - Junyi Zhu
TI  - Two-component generalized Ragnisco--Tu equation and the~Riemann--Hilbert problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 68
EP  - 83
VL  - 205
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/
LA  - ru
ID  - TMF_2020_205_1_a4
ER  - 
%0 Journal Article
%A Linlin Wang
%A Caiqin Song
%A Junyi Zhu
%T Two-component generalized Ragnisco--Tu equation and the~Riemann--Hilbert problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 68-83
%V 205
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/
%G ru
%F TMF_2020_205_1_a4
Linlin Wang; Caiqin Song; Junyi Zhu. Two-component generalized Ragnisco--Tu equation and the~Riemann--Hilbert problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 68-83. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/