Two-component generalized Ragnisco–Tu equation and the Riemann–Hilbert problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 68-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Riemann–Hilbert approach, we investigate the two-component generalized Ragnisco–Tu equation. The modified equation is integrable in the sense that a Lax pair exists, but its explicit solutions have some distinctive properties. We show that the explicit one-wave solution is unstable and the two-wave solution preserves only the phase shift but not the wave shape after collision.
Keywords: Ragnisco–Tu equation, Riemann–Hilbert approach, unstable solution.
@article{TMF_2020_205_1_a4,
     author = {Linlin Wang and Caiqin Song and Junyi Zhu},
     title = {Two-component generalized {Ragnisco{\textendash}Tu} equation and {the~Riemann{\textendash}Hilbert} problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {68--83},
     year = {2020},
     volume = {205},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/}
}
TY  - JOUR
AU  - Linlin Wang
AU  - Caiqin Song
AU  - Junyi Zhu
TI  - Two-component generalized Ragnisco–Tu equation and the Riemann–Hilbert problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 68
EP  - 83
VL  - 205
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/
LA  - ru
ID  - TMF_2020_205_1_a4
ER  - 
%0 Journal Article
%A Linlin Wang
%A Caiqin Song
%A Junyi Zhu
%T Two-component generalized Ragnisco–Tu equation and the Riemann–Hilbert problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 68-83
%V 205
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/
%G ru
%F TMF_2020_205_1_a4
Linlin Wang; Caiqin Song; Junyi Zhu. Two-component generalized Ragnisco–Tu equation and the Riemann–Hilbert problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 68-83. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a4/

[1] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603 ; “Nonlinear differential-difference equations and Fourier analysis”, 17:6 (1976), 1011–1018 | DOI | MR | DOI | MR

[2] R. Hirota, “Nonlinear partial differential equations II. Discrete-time Toda equation”, J. Phys. Soc. Japan, 43:6 (1977), 2074–2078 | DOI | MR

[3] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[4] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR

[5] A.-M. Wazwaz, Discrete Mathematics: Methods and Applications, Stipes Publ., Champaign, IL, 2013

[6] K. M. Case, M. Kac, “A discrete version of the inverse scattering problem”, J. Math. Phys., 14:5 (1973), 594–603 | DOI | MR

[7] K. M. Case, “On discrete inverse scattering problems. II”, J. Math. Phys., 14:7 (1973), 916–920 | DOI | MR

[8] E. Date, M. Jinbo, T. Miwa, “Method for generating discrete soliton equations. I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–41127 | DOI | MR

[9] D. Levi, R. Benguria, “Bäcklund transformations and nonlinear differential difference equations”, Proc. Nat. Acad. Sci. USA, 77:9 (1980), 5025–5027 | DOI | MR

[10] A. S. Davydov, “Solitons in molecular systems”, Phys. Scr., 20:3–4 (1979), 387–394 | DOI | MR

[11] A. S. Fokas, E. P. Papadopoulou, Y. G. Saridakis, M. J. Ablowitz, “Interaction of simple particles in soliton cellular automata”, Stud. Appl. Math., 81:2 (1989), 153–180 | DOI | MR

[12] J. K. Park, K. Steiglitz, W. P. Thurston, “Soliton-like behavior in automata”, Phys. D, 19:3 (1986), 423–432 | DOI | MR

[13] H. W. Zhang, G.-Z. Tu, W. Oevel, B. Fuchssteiner, “Symmetries, conserved quantities, and hierarchies for some lattice systems with soliton structure”, J. Math. Phys., 32:7 (1991), 1908–1918 | DOI | MR

[14] I. Merola, O. Ragnisco, G.-Z. Tu, “A novel hierarchy of integrable lattices”, Inverse Probl., 10:6 (1994), 1315–1334 ; O. Ragnisco, G. Z. Tu, A new hierarchy of integrable discrete system, Department of Physics, University of Rome, 1989 | DOI | MR | Zbl

[15] Y. Liu, D. Chen, “The exact solutions to a Ragnisco–Tu hierarchy with self-consistent sources”, Nonlinear Anal., 74:16 (2011), 5223–5237 | DOI | MR

[16] J. Wang, X. Geng, “Explicit solutions of some $(2+1)$-dimensional differential-difference equations”, Phys. Lett. A, 319:1–2 (2003), 73–78 | DOI | MR

[17] X.-X. Xu, “Solving an integrable coupling system of Merola–Ragnisco–Tu lattice equation by Darboux transformation of Lax pair”, Commun. Nonlinear Sci. Numer. Simulat., 23:1–3 (2015), 192–201 | DOI | MR

[18] Z. Y. Qin, “A generalized Ablowitz–Ladik hierarchy, multi-Hamiltonian structure and Darboux transformation”, J. Math. Phys., 49:6 (2008), 063505, 14 pp. | DOI | MR

[19] L. Liu, D.-S. Wang, K. Han, X.-Y. Wen, “An integrable lattice hierarchy for Merola-Ragnisco–Tu lattice: $N$-fold Darboux transformation and conservation laws”, Commun. Nonlinear Sci. Numer. Simul., 63 (2018), 57–71 | DOI | MR

[20] X. Wu, W. Rui, X. Hong, “A new discrete integrable system derived from a generalized Ablowitz–Ladik hierarchy and its Darboux transformation”, Discrete Dyn. Nat. Soc., 2012 (2012), 652076, 19 pp. | DOI | MR

[21] X. Zeng, X. Geng, “Algebro-geometric solutions of the discrete Ragnisco–Tu hierarchy”, Rep. Math. Phys., 73:1 (2014), 17–48 | DOI | MR

[22] X.-X. Xu, “An integrable coupling family of Merola–Ragnisco–Tu lattice systems, its Hamiltonian structure and related nonisospectral integrable lattice family”, Phys. Lett. A, 374:3 (2010), 401–410 | DOI | MR

[23] B. Guo, L. Ling, “Riemann–Hilbert approach and $N$-soliton formula for coupled derivative Schrödinger equation”, J. Math. Phys., 53:7 (2012), 073506, 20 pp. | DOI | MR

[24] J. Wei, X. Geng, “A hierarchy of new nonlinear evolution equations and generalized bi-Hamiltonian structures”, Appl. Math. Comput., 268 (2015), 664-670 | DOI | MR