Integrable system of generalized relativistic interacting tops
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 55-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a family of integrable $GL(NM)$ models generalizing classical spin Ruijsenaars–Schneider systems (the case $N=1$) on one hand and relativistic integrable tops on the $GL(N)$ Lie group (the case $M=1$) on the other hand. We obtain the described models using the Lax pair with a spectral parameter and derive the equations of motion. To construct the Lax representation, we use the $GL(N)$ $R$-matrix in the fundamental representation of $GL(N)$.
Keywords: elliptic integrable system, spin Ruijsenaars–Schneider model, integrable interacting tops.
@article{TMF_2020_205_1_a3,
     author = {I. A. Sechin and A. V. Zotov},
     title = {Integrable system of generalized relativistic interacting tops},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {55--67},
     publisher = {mathdoc},
     volume = {205},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a3/}
}
TY  - JOUR
AU  - I. A. Sechin
AU  - A. V. Zotov
TI  - Integrable system of generalized relativistic interacting tops
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 55
EP  - 67
VL  - 205
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a3/
LA  - ru
ID  - TMF_2020_205_1_a3
ER  - 
%0 Journal Article
%A I. A. Sechin
%A A. V. Zotov
%T Integrable system of generalized relativistic interacting tops
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 55-67
%V 205
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a3/
%G ru
%F TMF_2020_205_1_a3
I. A. Sechin; A. V. Zotov. Integrable system of generalized relativistic interacting tops. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a3/