Integrable system of generalized relativistic interacting tops
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 55-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe a family of integrable $GL(NM)$ models generalizing classical spin Ruijsenaars–Schneider systems (the case $N=1$) on one hand and relativistic integrable tops on the $GL(N)$ Lie group (the case $M=1$) on the other hand. We obtain the described models using the Lax pair with a spectral parameter and derive the equations of motion. To construct the Lax representation, we use the $GL(N)$ $R$-matrix in the fundamental representation of $GL(N)$.
Keywords:
elliptic integrable system, spin Ruijsenaars–Schneider model, integrable interacting tops.
@article{TMF_2020_205_1_a3,
author = {I. A. Sechin and A. V. Zotov},
title = {Integrable system of generalized relativistic interacting tops},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {55--67},
publisher = {mathdoc},
volume = {205},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a3/}
}
TY - JOUR AU - I. A. Sechin AU - A. V. Zotov TI - Integrable system of generalized relativistic interacting tops JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 55 EP - 67 VL - 205 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a3/ LA - ru ID - TMF_2020_205_1_a3 ER -
I. A. Sechin; A. V. Zotov. Integrable system of generalized relativistic interacting tops. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 55-67. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a3/