Dispersionless integrable systems and the~Bogomolny equations on an~Einstein--Weyl geometry background
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 41-54

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a dispersionless integrable system describing a local form of a general three-dimensional Einstein–Weyl geometry with a Euclidean (positive) signature, construct its matrix extension, and show that it leads to the Bogomolny equations for a non-Abelian monopole on an Einstein–Weyl background. We also consider the corresponding dispersionless integrable hierarchy, its matrix extension, and the dressing scheme.
Keywords: dispersionless integrable system, Einstein–Weyl geometry, Yang–Mills–Higgs equations.
Mots-clés : Bogomolny equations
@article{TMF_2020_205_1_a2,
     author = {L. V. Bogdanov},
     title = {Dispersionless integrable systems and {the~Bogomolny} equations on {an~Einstein--Weyl} geometry background},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--54},
     publisher = {mathdoc},
     volume = {205},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a2/}
}
TY  - JOUR
AU  - L. V. Bogdanov
TI  - Dispersionless integrable systems and the~Bogomolny equations on an~Einstein--Weyl geometry background
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 41
EP  - 54
VL  - 205
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a2/
LA  - ru
ID  - TMF_2020_205_1_a2
ER  - 
%0 Journal Article
%A L. V. Bogdanov
%T Dispersionless integrable systems and the~Bogomolny equations on an~Einstein--Weyl geometry background
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 41-54
%V 205
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a2/
%G ru
%F TMF_2020_205_1_a2
L. V. Bogdanov. Dispersionless integrable systems and the~Bogomolny equations on an~Einstein--Weyl geometry background. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 41-54. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a2/