Mots-clés : Bogomolny equations
@article{TMF_2020_205_1_a2,
author = {L. V. Bogdanov},
title = {Dispersionless integrable systems and {the~Bogomolny} equations on {an~Einstein{\textendash}Weyl} geometry background},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {41--54},
year = {2020},
volume = {205},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a2/}
}
TY - JOUR AU - L. V. Bogdanov TI - Dispersionless integrable systems and the Bogomolny equations on an Einstein–Weyl geometry background JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 41 EP - 54 VL - 205 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a2/ LA - ru ID - TMF_2020_205_1_a2 ER -
L. V. Bogdanov. Dispersionless integrable systems and the Bogomolny equations on an Einstein–Weyl geometry background. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 41-54. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a2/
[1] L. V. Bogdanov, “Matrichnoe rasshirenie sistemy Manakova–Santini i integriruemaya kiralnaya model na fone geometrii Einshteina–Veilya”, TMF, 201:3 (2019), 337–346 | DOI | DOI
[2] S. V. Manakov, P. M. Santini, “The Cauchy problem on the plane for the dispersionless Kadomtsev–Petviashvili equation”, Pisma v ZhETF, 83:10 (2006), 534–538 | DOI
[3] S. V. Manakov, P. M. Santini, “Ierarkhiya integriruemykh uravnenii v chastnykh proizvodnykh v razmernosti $2+1$, assotsiirovannaya s odnoparametricheskimi semeistvami odnomernykh vektornykh polei”, TMF, 152:1 (2007), 147–156 | DOI | DOI | MR | Zbl
[4] M. Dunajski, E. V. Ferapontov, B. Kruglikov, “On the Einstein–Weyl and conformal self-duality equations”, J. Math. Phys., 56:8 (2015), 083501, 10 pp., arXiv: 1406.0018 | DOI | MR
[5] M. Dunajski, Solitons, Instantons, and Twistors, Oxford Graduate Texts in Mathematics, 19, Oxford Univ. Press, Oxford, 2010 | MR
[6] R. S. Ward, “Soliton solutions in an integrable chiral model in $2+1$ dimensions”, J. Math. Phys., 29:2 (1988), 386–389 | DOI | MR
[7] L. V. Bogdanov, “Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy”, J. Phys. A: Math. Theor., 43:43 (2010), 434008, 8 pp. | DOI | MR
[8] E. V. Ferapontov, B. S. Kruglikov, “Dispersionless integrable systems in 3D and Einstein–Weyl geometry”, J. Differ. Geom., 97:2 (2014), 215–254 | DOI | MR
[9] R. Penrose, “Nonlinear gravitons and curved twistor theory”, Gen. Rel. Grav., 7:1 (1976), 31–52 | DOI | MR
[10] M. F. Atiyah, N. J. Hitchin, I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362:1711 (1978), 425–461 | DOI | MR
[11] N. J. Hitchin, “Complex manifolds and Einstein's equations”, Twistor Geometry and Non-Linear Systems (Primorsko, Bulgaria, September 1980), Lecture Notes in Mathematics, 970, eds. H.-D. Doebner, T. D. Palev, Springer, Berlin–Heidelberg, 1982, 73–99 | DOI | MR
[12] D. M. J. Calderbank, “Integrable background geometries”, SIGMA, 10 (2014), 034, 51 pp. | DOI | MR
[13] L. V. Bogdanov, “SDYM equations on the self-dual background”, J. Phys. A: Math. Theor., 50:19 (2017), 19LT02, 9 pp. | DOI | MR
[14] H. Pedersen, K. P. Tod, “Three dimensional Einstein–Weyl geometry”, Adv. Math., 97:1 (1993), 74–109 | DOI | MR
[15] L. V. Bogdanov, “Dunajski–Tod equation and reductions of the generalized dispersionless 2DTL hierarchy”, Phys. Lett. A, 376:45 (2012), 2894–2898, arXiv: 1204.3780 | DOI | MR
[16] S. V. Manakov, V. E. Zakharov, “Three-dimensional model of relativistic-invariant field theory, integrable by the inverse scattering transform”, Lett. Math. Phys., 5:3 (1981), 247–253 | DOI | MR