Keywords: Dirac operator, quantum group.
@article{TMF_2020_205_1_a10,
author = {M. Lotfizadeh and R. Feyzi},
title = {Construction of {the~Dirac} operator on the~$q$-deformed quantum space $EAdS^2$ using a~generalized $q$-deformed {Ginsparg{\textendash}Wilson} algebra},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {156--167},
year = {2020},
volume = {205},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a10/}
}
TY - JOUR AU - M. Lotfizadeh AU - R. Feyzi TI - Construction of the Dirac operator on the $q$-deformed quantum space $EAdS^2$ using a generalized $q$-deformed Ginsparg–Wilson algebra JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 156 EP - 167 VL - 205 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a10/ LA - ru ID - TMF_2020_205_1_a10 ER -
%0 Journal Article %A M. Lotfizadeh %A R. Feyzi %T Construction of the Dirac operator on the $q$-deformed quantum space $EAdS^2$ using a generalized $q$-deformed Ginsparg–Wilson algebra %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 156-167 %V 205 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a10/ %G ru %F TMF_2020_205_1_a10
M. Lotfizadeh; R. Feyzi. Construction of the Dirac operator on the $q$-deformed quantum space $EAdS^2$ using a generalized $q$-deformed Ginsparg–Wilson algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 156-167. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a10/
[1] J. M. Gracia-Bondia, J. C. Várilly, H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser, Boston, MA, 2000 | DOI | MR
[2] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[3] J. Madore, An Introduction to Noncommutative Differential Geometry and its Physical Applications, London Mathematical Society Lecture Note Series, 257, Cambridge Univ. Press, Cambridge, 1999 | DOI | MR | Zbl
[4] A. P. Balachandran, S. Kürkçüoǧlu, S. Vaidya, Lecture on Fuzzy and Fuzzy SUSY Physics, World Sci., Singapore, 2007 | DOI | MR
[5] P. H. Ginsparg, K. G. Wilson, “A remnant of chiral symmetry on the lattice”, Phys. Rev. D, 25:10 (1982), 2649–2657 | DOI
[6] A. P. Balachandran, G. Immirzi, “Fuzzy Ginsparg–Wilson algebra: a solution of the fermion doubling problem”, Phys. Rev. D, 68:6 (2003), 065023, 7 pp., arXiv: hep-th/0301242 | DOI | MR
[7] H. Aoki, S. Iso, K. Nagao, “Ginsparg–Wilson relation, topological invariants, and finite noncommutative geometry”, Phys. Rev. D, 67:8 (2003), 085005, 5 pp., arXiv: hep-th/0209223 | DOI | MR
[8] A. P. Balachandran, P. Padmanabhan, “Spin $j$ Dirac operators on the fuzzy 2-sphere”, JHEP, 09 (2009), 120, 21 pp., arXiv: 0907.2977 | DOI | MR
[9] U. Carow-Watamura, S. Watamura, “Chirality and Dirac operator on noncommutative sphere”, Commun. Math. Phys., 183:2 (1997), 365–382, arXiv: hep-th/9605003 | DOI | MR
[10] H. Gross, P. Pres̆najder, “The construction of noncommutative manifolds using coherent states”, Lett. Math. Phys., 28:3 (1993), 239–250 ; “The dirac operator on the fuzzy sphere”, 33:2 (1995), 171–181 | DOI | MR | DOI | MR
[11] K. Nagao, “Ginsparg–Wilson relation and admissibility condition in noncommutative geometry”, Progr. Theor. Phys. Suppl., 171 (2007), 232–235 | DOI
[12] T. Brzeziński, S. Majid, “Quantum group gauge theory on quantum spaces”, Commun. Math. Phys., 157:3 (1993), 591–638 | DOI | MR
[13] P. Podleś, “Quantum spheres”, Lett. Math. Phys., 14:3 (1987), 193–202 ; “Differential calculus on quantum spheres”, 18:2 (1989), 107–119 | DOI | MR | DOI | MR
[14] A. Pinzul, A. Stern, “Dirac operator on the quantum sphere”, Phys. Lett. B, 512:1–2 (2001), 217–224, arXiv: hep-th/0103206 | DOI | MR
[15] P. N. Bibikov, P. P. Kulish, “Operatory Diraka na kvantovoi gruppe $SU_{q}(2)$ i kvantovoi sfere”, Zap. nauchn. sem. POMI, 245 (1997), 49–65, arXiv: q-alg/9608012 | DOI | MR | Zbl
[16] E. Harikumar, A. R. Queiroz, P. Teotonio-Sobrinho, “Dirac operator on the q-deformed fuzzy sphere and its spectrum”, JHEP, 09 (2006), 037, 20 pp., arXiv: hep-th/0603193 | DOI | MR
[17] L. Dabrowski, G. Landi, A. Sitarz, W. van Suijlekom, J. C. Várilly, “The Dirac operator on $SU_q(2)$”, Commun. Math. Phys., 259:3 (2005), 729–759, arXiv: math/0411609 | DOI | MR
[18] H. Grosse, J. Madore, H. Steinacker, “Field theory on the $q$-deformed fuzzy sphere I”, J. Geom. Phys., 38:3–4 (2001), 308–342, arXiv: ; “Field theory on the $q$-deformed fuzzy sphere II: quantization”, 43:2–3 (2002), 205–240, arXiv: hep-th/0005273hep-th/0103164 | DOI | MR | Zbl | DOI | MR
[19] K. Ohta, H. Suzuki, “Dirac operators on quantum-two spheres”, Modern Phys. Lett. A, 9:25 (1994), 2325–2333, arXiv: hep-th/9405180 | DOI | MR
[20] H. Fakhri, A. Imaanpur, “Dirac operator on fuzzy $AdS_2$”, JHEP, 03 (2003), 003, 15 pp., arXiv: hep-th/0302154 | DOI | MR
[21] H. Fakhri, M. Lotfizade, “Dirac operators on the fuzzy $AdS_2$ with the spins $\frac{1}{2}$ and 1”, J. Math. Phys., 52:10 (2011), 103508, 13 pp. | DOI | MR
[22] H. Steinacker, “Finite dimensional unitary representations of quantum Anti-de Sitter groups at roots of unity”, Commun. Math. Phys., 192:3 (1998), 687–706, arXiv: q-alg/9611009 | DOI | MR
[23] G. Landi, “Projective modules of finite type and monopoles over $S^2$”, J. Geom. Phys., 37:1–2 (2001), 47–62, arXiv: math-ph/9905014 | DOI | MR
[24] K. Hasebe, “The split algebras and noncompact Hopf maps”, J. Math. Phys., 51:5 (2010), 053524, 35 pp., arXiv: ; “Non-compact Hopf maps and fuzzy ultra-hyperboloids”, Nucl. Phys. B, 865:1 (2012), 148–199, arXiv: 0905.27921207.1968 | DOI | MR | DOI | MR
[25] R. G. Swan, “Vector bundles and projective modules”, Trans. Amer. Math. Soc., 105 (1962), 264–277 | DOI | MR
[26] A. Mostafazadeh, “Pseudo Hermiticity versus PT-symmetry: The structure responsible for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: ; “Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonian with a real spectrum”, 43:5, 2814–2816, arXiv: ; “Pseudo-Hermiticity versus PT-symmetry. III. Equivalence of pseudo Hermiticity and the presence of antilinear symmetries”, 43:8, 3944–3951, arXiv: math-ph/0107001math-ph/0110016math-ph/0203005 | DOI | MR | DOI | MR | DOI | MR | Zbl
[27] S. Brain, G. Landi, “The 3D spin geometry of the quantum two-sphere”, Rev. Math. Phys., 22:8 (2010), 963–993 | DOI | MR