Mots-clés : noninvertible transformation.
@article{TMF_2020_205_1_a1,
author = {R. N. Garifullin and R. I. Yamilov},
title = {Modified series of integrable discrete equations on a~quadratic lattice with a~nonstandard symmetry structure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {23--40},
year = {2020},
volume = {205},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a1/}
}
TY - JOUR AU - R. N. Garifullin AU - R. I. Yamilov TI - Modified series of integrable discrete equations on a quadratic lattice with a nonstandard symmetry structure JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 23 EP - 40 VL - 205 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a1/ LA - ru ID - TMF_2020_205_1_a1 ER -
%0 Journal Article %A R. N. Garifullin %A R. I. Yamilov %T Modified series of integrable discrete equations on a quadratic lattice with a nonstandard symmetry structure %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 23-40 %V 205 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a1/ %G ru %F TMF_2020_205_1_a1
R. N. Garifullin; R. I. Yamilov. Modified series of integrable discrete equations on a quadratic lattice with a nonstandard symmetry structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 23-40. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a1/
[1] R. N. Garifullin, R. I. Yamilov, “Neobychnaya seriya avtonomnykh diskretnykh integriruemykh uravnenii na kvadratnoi reshetke”, TMF, 200:1 (2019), 50–71 | DOI | DOI
[2] R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48:23 (2015), 235201, 27 pp., arXiv: 1501.05435 | DOI | MR
[3] R. N. Garifullin, R. I. Yamilov, “Examples of Darboux integrable discrete equations possessing first integrals of an arbitrarily high minimal order”, Ufimsk. matem. zhurn., 4:3 (2012), 177–183 | MR
[4] R. N. Garifullin, R. I. Yamilov, “On series of Darboux integrable discrete equations on square lattice”, Ufimsk. matem. zhurn., 11:3 (2019), 100–109 | DOI
[5] R. N. Garifullin, R. I. Yamilov, D. Levi, “Non-invertible transformations of differential-difference equations”, J. Phys. A: Math. Theor., 49:37 (2016), 37LT01, 12 pp. | DOI | MR
[6] S. Ya. Startsev, “On non-point invertible transformations of difference and differential-difference equations”, SIGMA, 6 (2010), 092, 14 pp. | MR
[7] R. I. Yamilov, “Obratimye zameny peremennykh, porozhdennye preobrazovaniyami Beklunda”, TMF, 85:3 (1990), 368–375 | DOI | MR | Zbl
[8] A. V. Mikhailov, “Formalnaya diagonalizatsiya skhem Laksa–Darbu”, Model. i analiz inform. sistem, 22:6 (2015), 795–817 | DOI | MR
[9] D. Levi, R. I. Yamilov, “Generalized symmetry integrability test for discrete equations on the square lattice”, J. Phys. A: Math. Theor., 44:14 (2011), 145207, 22 pp., arXiv: 1011.0070 | DOI | MR
[10] R. I. Yamilov, “O klassifikatsii diskretnykh evolyutsionnykh uravnenii”, UMN, 38:6(234) (1983), 155–156
[11] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR
[12] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl
[13] D. Levi, M. Petrera, C. Scimiterna, R. Yamilov, “On Miura transformations and Volterra–type equations associated with the Adler–Bobenko–Suris equations”, SIGMA, 4 (2008), 077, 14 pp. | MR
[14] V. E. Adler, “Integriruemye Mebius-invariantnye evolyutsionnye tsepochki vtorogo poryadka”, Funkts. analiz i ego pril., 50:4 (2016), 13–25 | DOI | DOI | MR
[15] R. I. Yamilov, “On the construction of Miura type transformations by others of this kind”, Phys. Lett. A, 173 (1993), 53–57 | DOI | MR
[16] R. I. Yamilov, “Construction scheme for discrete Miura transformations”, J. Phys. A: Math. Gen., 27:20 (1994), 6839–6851 | DOI | MR
[17] H. Zhang, G. Tu, W. Oevel, B. Fuchssteiner, “Symmetries, conserved quantities and hierarchies for some lattice systems with soliton structure”, J. Math. Phys., 32:7 (1991), 1908–1918 | DOI | MR
[18] R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50:12 (2017), 125201, 27 pp., arXiv: 1610.07342 | DOI | MR
[19] W. Oevel, H. Zhang, B. Fuchssteiner, “Mastersymmetries and multi-Hamiltonian formulations for some integrable lattice systems”, Progr. Theor. Phys., 81:2 (1989), 294–308 | DOI | MR
[20] V. E. Adler, “Integriruemye semitochechnye diskretnye uravneniya i evolyutsionnye tsepochki vtorogo poryadka”, TMF, 195:1 (2018), 27–43 | DOI | DOI