Binary relations, Bäcklund transformations, and wave packet propagation
Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 3-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a mathematical apparatus based on binary relations that expands the possibility of traditional analysis applied to problems in mathematical and theoretical physics. We illustrate the general constructions with examples with an algebraic description of Bäcklund transformations of nonlinear systems of partial differential equations and the dynamics of wave packet propagation.
Keywords: binary relation, related sets, related endomorphisms, related morphisms, related categories, related functors, differential relation, related symmetries, Bäcklund transformation, fuzzy category, wave packet
Mots-clés : dispersion.
@article{TMF_2020_205_1_a0,
     author = {V. V. Zharinov},
     title = {Binary relations, {B\"acklund} transformations, and wave packet propagation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--22},
     year = {2020},
     volume = {205},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Binary relations, Bäcklund transformations, and wave packet propagation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 3
EP  - 22
VL  - 205
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a0/
LA  - ru
ID  - TMF_2020_205_1_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Binary relations, Bäcklund transformations, and wave packet propagation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 3-22
%V 205
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a0/
%G ru
%F TMF_2020_205_1_a0
V. V. Zharinov. Binary relations, Bäcklund transformations, and wave packet propagation. Teoretičeskaâ i matematičeskaâ fizika, Tome 205 (2020) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2020_205_1_a0/

[1] G. Schmidt, Relational Mathematics, Encyclopedia of Mathematics and its Applications, 132, Cambridge Univ. Press, Cambridge, 2011 | MR

[2] S. Maklein, Kategorii dlya rabotayuschego matematika, M., Fizmatlit, 2004 | MR

[3] V. V. Zharinov, “Analiz v differentsialnykh algebrakh i modulyakh”, TMF, 196:1 (2018), 3–21 | DOI | DOI | MR

[4] V. V. Zharinov, “O preobrazovanii Beklunda”, TMF, 189:3 (2016), 323–334 | DOI | DOI | MR

[5] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Series on Soviet and East European Mathematics, 9, World Sci., Singapore, 1992 | DOI | MR

[6] C. Rogers, W. K. Schiff, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge, 2002 | MR

[7] | DOI | MR | Zbl

[8] H. T. Nguyen, C. L. Walker, E. A. Walker, A First Course in Fuzzy Logic, CRC Press, Boca Raton, FL, 2019 | MR

[9] G. J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic. Theory and Applications, Prentice Hall PTR, New Jersey, 1995 | MR

[10] J. Pykacz, Quantum Physics, Fuzzy Sets and Logic, Springer, Cham, 2015 | DOI | MR

[11] C. L. Walker, “Categories of fuzzy sets”, Soft Comput., 8:4 (2004), 299–304 | DOI

[12] I. V. Volovich, “Uravneniya Bogolyubova i funktsionalnaya mekhanika”, TMF, 164:3 (2010), 354–362 | DOI | DOI

[13] I. V. Volovich, “Randomness in classical mechanics and quantum mechanics”, Found. Phys., 41:3 (2011), 516–528, arXiv: 0910.5391 | DOI | MR

[14] I. V. Volovich, “Functional stochastic classical mechanics”, P-Adic Numbers Ultrametric Anal. Appl., 7:1 (2015), 56–70 | DOI | MR