@article{TMF_2020_204_3_a8,
author = {D. S. Rudneva and A. V. Zabrodin},
title = {Elliptic solutions of the~semidiscrete {B-version} of {the~Kadomtsev{\textendash}Petviashvili} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {445--452},
year = {2020},
volume = {204},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a8/}
}
TY - JOUR AU - D. S. Rudneva AU - A. V. Zabrodin TI - Elliptic solutions of the semidiscrete B-version of the Kadomtsev–Petviashvili equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 445 EP - 452 VL - 204 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a8/ LA - ru ID - TMF_2020_204_3_a8 ER -
D. S. Rudneva; A. V. Zabrodin. Elliptic solutions of the semidiscrete B-version of the Kadomtsev–Petviashvili equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 445-452. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a8/
[1] H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR
[2] I. M. Krichever, “O ratsionalnykh resheniyakh uravneniya Kadomtseva–Petviashvili i ob integriruemykh sistemakh $N$ chastits na pryamoi”, Funkts. analiz i ego pril., 12:1 (1978), 76–78 | DOI | MR | Zbl
[3] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl
[4] D. V. Choodnovsky, G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B, 40:2 (1977), 339–350 | DOI | MR
[5] F. Calogero, “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12:5 (1971), 419–436 | DOI | MR
[6] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–415 | DOI | MR
[7] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR
[8] M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR
[9] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Reisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Toda i predstavleniya algebry Sklyanina”, UMN, 50:6(306) (1995), 3–56 | DOI | MR | Zbl
[10] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR
[11] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Non-linear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl
[12] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type”, Phys. D, 4:3 (1982), 343–365 | DOI | MR
[13] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Quasi-periodic solutions of the orthogonal KP equation. Transformation groups for soliton equations V”, Publ. Res. Inst. Math. Sci., 18:3 (1982), 1111–1119 | DOI | MR
[14] I. Loris, R. Willox, “Symmetry reductions of the BKP hierarchy”, J. Math. Phys., 40:3 (1999), 1420–1431 | DOI | MR
[15] M.-H. Tu, “On the BKP hierarchy: additional symmetries, Fay identity and Adler–Shiota–van Moerbeke formula”, Lett. Math. Phys., 81:2 (2007), 93–105, arXiv: nlin/0611053 | DOI | MR
[16] D. Rudneva, A. Zabrodin, “Dynamics of poles of elliptic solutions to the BKP equation”, J. Phys. A: Math. Theor., 53:7 (2020), 075202, arXiv: 1903.00968 | DOI
[17] A. Zabrodin, “Elliptic solutions to integrable nonlinear equations and many-body systems”, J. Geom. Phys., 146 (2019), 103506, 26 pp., arXiv: 1905.11383 | DOI | MR
[18] S. V. Manakov, “Metod obratnoi zadachi rasseyaniya i dvumernye evolyutsionnye uravneniya”, UMN, 31:5(191) (1976), 245–246 | MR | Zbl
[19] T. Miwa, “On Hirota's difference equations”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR