Multiplicative dynamical systems in terms of the~induced dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 436-444
Voir la notice de l'article provenant de la source Math-Net.Ru
We realize an example of induced dynamics using new multiplicative
determinant relations whose roots give the particle positions. We present
both a general scheme for describing completely integrable dynamical systems
parameterized by an arbitrary $N\times N$ matrix of momenta and an explicit
model that interpolates between the Calogero–Moser and
Ruijsenaars–Schneider hyperbolic systems. We consider some special cases of
this model in detail.
Keywords:
induced dynamics, completely integrable system.
@article{TMF_2020_204_3_a7,
author = {A. K. Pogrebkov},
title = {Multiplicative dynamical systems in terms of the~induced dynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {436--444},
publisher = {mathdoc},
volume = {204},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a7/}
}
A. K. Pogrebkov. Multiplicative dynamical systems in terms of the~induced dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 436-444. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a7/