Multiplicative dynamical systems in terms of the induced dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 436-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We realize an example of induced dynamics using new multiplicative determinant relations whose roots give the particle positions. We present both a general scheme for describing completely integrable dynamical systems parameterized by an arbitrary $N\times N$ matrix of momenta and an explicit model that interpolates between the Calogero–Moser and Ruijsenaars–Schneider hyperbolic systems. We consider some special cases of this model in detail.
Keywords: induced dynamics, completely integrable system.
@article{TMF_2020_204_3_a7,
     author = {A. K. Pogrebkov},
     title = {Multiplicative dynamical systems in terms of the~induced dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {436--444},
     year = {2020},
     volume = {204},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a7/}
}
TY  - JOUR
AU  - A. K. Pogrebkov
TI  - Multiplicative dynamical systems in terms of the induced dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 436
EP  - 444
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a7/
LA  - ru
ID  - TMF_2020_204_3_a7
ER  - 
%0 Journal Article
%A A. K. Pogrebkov
%T Multiplicative dynamical systems in terms of the induced dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 436-444
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a7/
%G ru
%F TMF_2020_204_3_a7
A. K. Pogrebkov. Multiplicative dynamical systems in terms of the induced dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 436-444. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a7/

[1] A. K. Pogrebkov, “Induced dynamics”, J. Nonlinear Math. Phys., 27:2 (2020), 324–336 | DOI | MR

[2] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento (2), 13:11 (1975), 411–416 | DOI | MR

[3] F. Calogero, Classical Many-Body Problems Amenable to Exact Treatments, Lecture Notes in Physics Monographs, 66, Springer, Berlin, 2001 | DOI | MR

[4] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR

[5] S. N. M. Ruijsenaars, “Action-angle maps and scattering theory for some finite-dimensional integrable systems. I. The pure soliton case”, Commun. Math. Phys., 115:1 (1988), 127–165 | DOI | MR

[6] M. A. Olshanetsky, A. M. Perelomov, “Explicit solution of the Calogero model in the classical case and geodesic flows on symmetric spaces of zero curvature”, Lett. Nuovo Cimento (2), 16:11 (1976), 333–339 | DOI | MR

[7] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR

[8] Yu. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR

[9] F. Calogero, “Motion of poles and zeros of special solutions of nonlinear and linear partial differential equations and related ‘solvable’ many body problems”, Nuovo Cimento B, 43:2 (1978), 177–241 | DOI | MR

[10] F. Calogero, Zeros of Polynomials and Solvable Nonlinear Evolution Equations, Cambridge Univ. Press, Cambridge, 2018 | DOI | MR