Wronskian-type formula for inhomogeneous $TQ$ equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 430-435 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the transfer-matrix eigenvalues of the isotropic open Heisenberg quantum spin-1/2 chain with nondiagonal boundary magnetic fields satisfy a $TQ$ equation with an inhomogeneous term. We derive a discrete Wronskian-type formula relating a solution of this inhomogeneous $TQ$ equation to the corresponding solution of a dual inhomogeneous $TQ$ equation.
Keywords: Bethe ansatz, discrete Wronskian, boundary integrability.
Mots-clés : $TQ$ equation
@article{TMF_2020_204_3_a6,
     author = {Rafael I. Nepomechie},
     title = {Wronskian-type formula for inhomogeneous $TQ$ equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {430--435},
     year = {2020},
     volume = {204},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a6/}
}
TY  - JOUR
AU  - Rafael I. Nepomechie
TI  - Wronskian-type formula for inhomogeneous $TQ$ equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 430
EP  - 435
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a6/
LA  - ru
ID  - TMF_2020_204_3_a6
ER  - 
%0 Journal Article
%A Rafael I. Nepomechie
%T Wronskian-type formula for inhomogeneous $TQ$ equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 430-435
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a6/
%G ru
%F TMF_2020_204_3_a6
Rafael I. Nepomechie. Wronskian-type formula for inhomogeneous $TQ$ equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 430-435. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a6/

[1] G. P. Pronko, Yu. G. Stroganov, “Bethe equations ‘on the wrong side of equator’ ”, J. Phys. A: Math. Gen., 32:12 (1999), 2333–2340, arXiv: hep-th/9808153 | DOI | MR

[2] E. Mukhin, V. Tarasov, A. Varchenko, “Bethe algebra of homogeneous XXX Heisenberg model has simple spectrum”, Commun. Math. Phys., 288:1 (2009), 1–42, arXiv: 0706.0688 | DOI | MR

[3] V. Tarasov, “Completeness of the Bethe ansatz for the periodic isotropic Heisenberg model”, Rev. Math. Phys., 30:8 (2018), 1840018, 18 pp. | DOI | MR

[4] C. Marboe, D. Volin, “Fast analytic solver of rational Bethe equations”, J. Phys. A: Math. Theor., 50:20 (2017), 204002, 14 pp., arXiv: 1608.06504 | DOI | MR

[5] E. Granet, J. L. Jacobsen, “On zero-remainder conditions in the Bethe ansatz”, JHEP, 03 (2020), 178, 15 pp., arXiv: 1910.07797 | DOI

[6] Z. Bajnok, E. Granet, J. L. Jacobsen, R. I. Nepomechie, “On generalized $Q$-systems”, JHEP, 03 (2020), 177, 27 pp., arXiv: 1910.07805 | DOI

[7] R. I. Nepomechie, “Q-systems with boundary parameters”, J. Phys. A: Math. Theor., 53:29 (2020), 294001, arXiv: 1912.12702 | DOI

[8] S. Belliard, N. A. Slavnov, B. Vallet, “Modified algebraic Bethe ansatz: Twisted XXX case”, SIGMA, 14 (2018), 054, 18 pp., arXiv: 1804.00597 | DOI

[9] J. Cao, W.-L. Yang, K. Shi, Y. Wang, “Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions”, Nucl. Phys. B, 875:1 (2013), 152–165, arXiv: 1306.1742 | DOI | MR

[10] R. I. Nepomechie, “An inhomogeneous $T$-$Q$ equation for the open XXX chain with general boundary terms: completeness and arbitrary spin”, J. Phys. A: Math. Theor., 46:44 (2013), 442002, 7 pp., arXiv: 1307.5049 | DOI | MR

[11] Y. Wang, W.-L. Yang, J. Cao, K. Shi, Off-Diagonal Bethe Ansatz for Exactly Solvable Models, Springer, Heidelberg, 2015 | MR

[12] S. Ghoshal, A. B. Zamolodchikov, “Boundary S matrix and boundary state in two-dimensional integrable quantum field theory”, Internat. J. Modern Phys. A, 9:21 (1994), 3841–3885, arXiv: hep-th/9306002 | DOI | MR

[13] H. J. de Vega, A. Gonzalez-Ruiz, “Boundary $K$-matrices for the $XYZ$, $XXZ$ and $XXX$ spin chains”, J. Phys. A: Math. Gen., 27:18 (1994), 6129–6137, arXiv: hep-th/9306089 | DOI | MR

[14] E. K. Sklyanin, “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21:10 (1988), 2375–2389 | DOI | MR