@article{TMF_2020_204_3_a4,
author = {V. B. Matveev and A. O. Smirnov},
title = {Multiphase solutions of nonlocal symmetric reductions of equations of {the~AKNS} hierarchy: {General} analysis and simplest examples},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {383--395},
year = {2020},
volume = {204},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/}
}
TY - JOUR AU - V. B. Matveev AU - A. O. Smirnov TI - Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 383 EP - 395 VL - 204 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/ LA - ru ID - TMF_2020_204_3_a4 ER -
%0 Journal Article %A V. B. Matveev %A A. O. Smirnov %T Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 383-395 %V 204 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/ %G ru %F TMF_2020_204_3_a4
V. B. Matveev; A. O. Smirnov. Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 383-395. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/
[1] V. V. Konotop, J. Yang, D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$-symmetric systems”, Rev. Modern Phys., 88:3 (2016), 035002, 59 pp., arXiv: 1603.06826 | DOI
[2] D. Christodoulides, J. Yang (eds.), Parity-time Symmetry and Its Applications, Springer Tracts in Modern Physics, 280, Springer, Singapore, 2018
[3] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI
[4] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $PT$ symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI
[5] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR
[6] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2017), 7–59 | DOI | MR
[7] T. P. Horikis, M. J. Ablowitz, “Rogue waves in nonlocal media”, Phys. Rev. E, 95:4 (2017), 042211, 7 pp., arXiv: 1608.00927 | DOI | MR
[8] M. J. Ablowitz, B.-F. Feng, X.-D. Luo, Z. H. Musslimani, “Reverse space-time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions”, Stud. Appl. Math., 141:3 (2018), 267–307 | DOI | MR | Zbl
[9] V. S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp. | DOI | MR
[10] X.-Y. Tang, Z.-F. Liang, X.-Z. Hao, “Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system”, Commun. Nonlinear Sci. Numer. Simulat., 60 (2018), 62–71 | DOI
[11] Z.-J. Yang, S.-M. Zhang, X.-L. Li, Z.-G. Pang, “Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation”, Appl. Math. Lett., 82 (2018), 64–70 | DOI | MR
[12] K. Manikandan, N. Vishnu Priya, M. Senthilvelan, R. Sankaranarayanan, “Deformation of dark solitons in a $\mathcal{PT}$-invariant variable coefficients nonlocal nonlinear Schrodinger equation”, Chaos, 28:8 (2018), 083103, 12 pp. | DOI | MR
[13] D.-Y. Liu, W.-R. Sun, “Rational solutions for the nonlocal sixth-order nonlinear Schrödinger equation”, Appl. Math. Lett., 84 (2018), 63–69 | DOI | MR
[14] H.-Q. Zhang, M. Gao, “Rational soliton solutions in the parity-time-symmetric nonlocal coupled nonlinear Schrödinger equations”, Commun. Nonlinear Sci. Numer. Simul., 63 (2018), 253–260 | DOI | MR
[15] P. S. Vinayagam, R. Radha, U. Al Khawaja, L. Ling, “New classes of solutions in the coupled $\mathcal{PT}$ symmetric nonlocal nonlinear Schrödinger equations with four wave mixing”, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 387–395, arXiv: 1804.04914 | DOI | MR
[16] K. Chen, X. Deng, S. Lou, D.-J. Zhang, “Solutions of nonlocal equations reduced from the AKNS hierarchy”, Stud. Appl. Math., 141:1 (2018), 113–141 | DOI | MR
[17] M. Gürses, A. Pekcan, “Nonlocal modified KdV equations and their soliton solutions by Hirota method”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 427–448 | DOI | MR
[18] B. Yang, J. Yang, “Rogue waves in the nonlocal $\mathcal{PT}$-symmetric nonlinear Schrödinger equation”, Lett. Math. Phys., 109:4 (2019), 945–973, arXiv: 1711.05930 | DOI | MR
[19] J. Yang, “General $N$-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations”, Phys. Lett. A, 383:4 (2019), 328–337 | DOI | MR
[20] A. O. Smirnov, E. E. Aman, “The simplest oscillating solutions of nonlocal nonlinear models”, J. Phys.: Conf. Ser., 1399:2 (2019), 022020, 10 pp. | DOI
[21] Y. Yang, T. Suzuki, X. Cheng, “Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan–Porsezian–Daniel equation”, Appl. Math. Lett., 99 (2020), 105998, 8 pp. | DOI | MR
[22] B. Yang, Y. Chen, “Reductions of Darboux transformations for the $\mathcal{PT}$-symmetric nonlocal Davey–Stewartson equations”, Appl. Math. Lett., 82 (2018), 43–49 | DOI | MR
[23] J. Rao, Y. Zhang, A. S. Fokas, J. He, “Rogue waves of the nonlocal Davey–Stewartson I equation”, Nonlinearity, 31:9 (2018), 4090–4107 | DOI | MR
[24] C. Qian, J. Rao, D. Mihalache, J. He, “Rational and semi-rational solutions of the $y$-nonlocal Davey-Stewartson I equation”, Comput. Math. Appl., 75:9 (2018), 3317–3330 | DOI | MR
[25] B. Yang, Y. Chen, “Dynamics of rogue waves in the partially $\mathcal{PT}$-symmetric nonlocal Davey–Stewartson systems”, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 287–303 | DOI | MR
[26] V. S. Gerdzhikov, G. G. Grakhovski, R. I. Ivanov, “$N$-volnovye uravneniya s $\mathcal{PT}$-simmetriei”, TMF, 188:3 (2016), 397–415 | DOI | DOI | MR
[27] Z.-X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488 | DOI | MR
[28] Y. Cao, B. A. Malomed, J. He, “Two $(2+1)$-dimensional integrable nonlocal nonlinear Schrödinger equations: breather, rational and semi-rational solution”, Chaos, Solitons and Fractals, 114 (2018), 99–107, arXiv: 1806.11107 | DOI | MR
[29] W. Liu, X. Li, “General soliton solutions to a $(2+1)$-dimensional nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions”, Nonlinear Dynamics, 93:2 (2018), 721–731 | DOI
[30] Y. Cao, J. Rao, D. Mihalache, J. He, “Semi-rational solutions for the $(2+1)$-dimensional nonlocal Fokas system”, Appl. Math. Lett., 80 (2018), 27–34 | DOI | MR
[31] Q. Zhang, Y. Zhang, R. Ye, “Exact solutions of nonlocal Fokas–Lenells equation”, Appl. Math. Lett., 98 (2019), 336–343 | DOI | MR
[32] V. S. Gerdjikov, “On the Integrability of Ablowitz–Ladik models with local and nonlocal reductions”, J. Phys.: Conf. Ser., 1205 (2019), 012015, 8 pp. | DOI
[33] V. B. Matveev, A. O. Smirnov, “Resheniya tipa ‘voln-ubiits’ uravnenii ierarkhii Ablovitsa–Kaupa–Nyuella–Sigura: edinyi podkhod”, TMF, 186:2 (2016), 191–220 | DOI | DOI | MR
[34] V. B. Matveev, A. O. Smirnov, “AKNS and NLS hierarchies, MRW solutions, $P_n$ breathers, and beyond”, J. Math. Phys., 59:9 (2018), 091419, 42 pp. | DOI | MR
[35] V. B. Matveev, A. O. Smirnov, “Two-phase periodic solutions to the AKNS hierarchy equations”, J. Math. Sci., 242:5 (2019), 722–741 | DOI
[36] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-geometrical Approach to Nonlinear Evolution Equations, Springer, Berlin, 1994
[37] B. Yang, J. Yang, “On general rogue waves in the parity-time-symmetric nonlinear Schrödinger equation”, J. Math. Anal. Appl., 487:2 (2020), 124023, 23 pp., arXiv: 1903.06203 | DOI | MR
[38] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform–Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR
[39] M. Lakshmanan, K. Porsezian, M. Daniel, “Effect of discreteness on the continuum limit of the Heisenberg spin chain”, Phys. Lett. A, 133:9 (1988), 483–488 | DOI
[40] K. Porsezian, M. Daniel, M. Lakshmanan, “On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain”, J. Math. Phys., 33:5 (1992), 1807–1816 | DOI | MR
[41] M. Daniel, K. Porsezian, M. Lakshmanan, “On the integrable models of the higher order water wave equation”, Phys. Lett. A, 174:3 (1993), 237–240 | DOI | MR
[42] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR
[43] C. Q. Dai, J. F. Zhang, “New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients”, J. Phys. A: Math. Theor., 39:4 (2006), 723–737 | DOI | MR
[44] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR
[45] L. Li, Z. Wu, L. Wang, J. He, “High-order rogue waves for the Hirota equation”, Ann. Phys., 334 (2013), 198–211 | DOI | MR
[46] J. S. He, Ch. Zh. Li, K. Porsezian, “Rogue waves of the Hirota and the Maxwell–Bloch equations”, Phys. Rev. E, 87:1 (2013), 012913, arXiv: 1205.1191 | DOI
[47] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6(198) (1977), 183–208 | DOI | MR | Zbl
[48] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | MR | Zbl
[49] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl