Multiphase solutions of nonlocal symmetric reductions of equations of the~AKNS hierarchy: General analysis and simplest examples
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 383-395
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider nonlocal symmetries that all or all even (all odd) equations of the AKNS hierarchy have. We construct examples of solutions simultaneously satisfying several nonlocal equations of the AKNS hierarchy. We present a detailed study of single-phase solutions.
Keywords:
$\mathcal{PT}$ symmetry, nonlocal model, AKNS hierarchy,
nonlinear Schrödinger equation, modified Korteweg–de Vries equation.
@article{TMF_2020_204_3_a4,
author = {V. B. Matveev and A. O. Smirnov},
title = {Multiphase solutions of nonlocal symmetric reductions of equations of {the~AKNS} hierarchy: {General} analysis and simplest examples},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {383--395},
publisher = {mathdoc},
volume = {204},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/}
}
TY - JOUR AU - V. B. Matveev AU - A. O. Smirnov TI - Multiphase solutions of nonlocal symmetric reductions of equations of the~AKNS hierarchy: General analysis and simplest examples JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 383 EP - 395 VL - 204 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/ LA - ru ID - TMF_2020_204_3_a4 ER -
%0 Journal Article %A V. B. Matveev %A A. O. Smirnov %T Multiphase solutions of nonlocal symmetric reductions of equations of the~AKNS hierarchy: General analysis and simplest examples %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 383-395 %V 204 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/ %G ru %F TMF_2020_204_3_a4
V. B. Matveev; A. O. Smirnov. Multiphase solutions of nonlocal symmetric reductions of equations of the~AKNS hierarchy: General analysis and simplest examples. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 383-395. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/