Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 383-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider nonlocal symmetries that all or all even (all odd) equations of the AKNS hierarchy have. We construct examples of solutions simultaneously satisfying several nonlocal equations of the AKNS hierarchy. We present a detailed study of single-phase solutions.
Keywords: $\mathcal{PT}$ symmetry, nonlocal model, AKNS hierarchy, nonlinear Schrödinger equation, modified Korteweg–de Vries equation.
@article{TMF_2020_204_3_a4,
     author = {V. B. Matveev and A. O. Smirnov},
     title = {Multiphase solutions of nonlocal symmetric reductions of equations of {the~AKNS} hierarchy: {General} analysis and simplest examples},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {383--395},
     year = {2020},
     volume = {204},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/}
}
TY  - JOUR
AU  - V. B. Matveev
AU  - A. O. Smirnov
TI  - Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 383
EP  - 395
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/
LA  - ru
ID  - TMF_2020_204_3_a4
ER  - 
%0 Journal Article
%A V. B. Matveev
%A A. O. Smirnov
%T Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 383-395
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/
%G ru
%F TMF_2020_204_3_a4
V. B. Matveev; A. O. Smirnov. Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 383-395. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a4/

[1] V. V. Konotop, J. Yang, D. A. Zezyulin, “Nonlinear waves in $\mathcal{PT}$-symmetric systems”, Rev. Modern Phys., 88:3 (2016), 035002, 59 pp., arXiv: 1603.06826 | DOI

[2] D. Christodoulides, J. Yang (eds.), Parity-time Symmetry and Its Applications, Springer Tracts in Modern Physics, 280, Springer, Singapore, 2018

[3] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[4] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $PT$ symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI

[5] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[6] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2017), 7–59 | DOI | MR

[7] T. P. Horikis, M. J. Ablowitz, “Rogue waves in nonlocal media”, Phys. Rev. E, 95:4 (2017), 042211, 7 pp., arXiv: 1608.00927 | DOI | MR

[8] M. J. Ablowitz, B.-F. Feng, X.-D. Luo, Z. H. Musslimani, “Reverse space-time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions”, Stud. Appl. Math., 141:3 (2018), 267–307 | DOI | MR | Zbl

[9] V. S. Gerdjikov, A. Saxena, “Complete integrability of nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 58:1 (2017), 013502, 33 pp. | DOI | MR

[10] X.-Y. Tang, Z.-F. Liang, X.-Z. Hao, “Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system”, Commun. Nonlinear Sci. Numer. Simulat., 60 (2018), 62–71 | DOI

[11] Z.-J. Yang, S.-M. Zhang, X.-L. Li, Z.-G. Pang, “Variable sinh-Gaussian solitons in nonlocal nonlinear Schrödinger equation”, Appl. Math. Lett., 82 (2018), 64–70 | DOI | MR

[12] K. Manikandan, N. Vishnu Priya, M. Senthilvelan, R. Sankaranarayanan, “Deformation of dark solitons in a $\mathcal{PT}$-invariant variable coefficients nonlocal nonlinear Schrodinger equation”, Chaos, 28:8 (2018), 083103, 12 pp. | DOI | MR

[13] D.-Y. Liu, W.-R. Sun, “Rational solutions for the nonlocal sixth-order nonlinear Schrödinger equation”, Appl. Math. Lett., 84 (2018), 63–69 | DOI | MR

[14] H.-Q. Zhang, M. Gao, “Rational soliton solutions in the parity-time-symmetric nonlocal coupled nonlinear Schrödinger equations”, Commun. Nonlinear Sci. Numer. Simul., 63 (2018), 253–260 | DOI | MR

[15] P. S. Vinayagam, R. Radha, U. Al Khawaja, L. Ling, “New classes of solutions in the coupled $\mathcal{PT}$ symmetric nonlocal nonlinear Schrödinger equations with four wave mixing”, Commun. Nonlinear Sci. Numer. Simul., 59 (2018), 387–395, arXiv: 1804.04914 | DOI | MR

[16] K. Chen, X. Deng, S. Lou, D.-J. Zhang, “Solutions of nonlocal equations reduced from the AKNS hierarchy”, Stud. Appl. Math., 141:1 (2018), 113–141 | DOI | MR

[17] M. Gürses, A. Pekcan, “Nonlocal modified KdV equations and their soliton solutions by Hirota method”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 427–448 | DOI | MR

[18] B. Yang, J. Yang, “Rogue waves in the nonlocal $\mathcal{PT}$-symmetric nonlinear Schrödinger equation”, Lett. Math. Phys., 109:4 (2019), 945–973, arXiv: 1711.05930 | DOI | MR

[19] J. Yang, “General $N$-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations”, Phys. Lett. A, 383:4 (2019), 328–337 | DOI | MR

[20] A. O. Smirnov, E. E. Aman, “The simplest oscillating solutions of nonlocal nonlinear models”, J. Phys.: Conf. Ser., 1399:2 (2019), 022020, 10 pp. | DOI

[21] Y. Yang, T. Suzuki, X. Cheng, “Darboux transformations and exact solutions for the integrable nonlocal Lakshmanan–Porsezian–Daniel equation”, Appl. Math. Lett., 99 (2020), 105998, 8 pp. | DOI | MR

[22] B. Yang, Y. Chen, “Reductions of Darboux transformations for the $\mathcal{PT}$-symmetric nonlocal Davey–Stewartson equations”, Appl. Math. Lett., 82 (2018), 43–49 | DOI | MR

[23] J. Rao, Y. Zhang, A. S. Fokas, J. He, “Rogue waves of the nonlocal Davey–Stewartson I equation”, Nonlinearity, 31:9 (2018), 4090–4107 | DOI | MR

[24] C. Qian, J. Rao, D. Mihalache, J. He, “Rational and semi-rational solutions of the $y$-nonlocal Davey-Stewartson I equation”, Comput. Math. Appl., 75:9 (2018), 3317–3330 | DOI | MR

[25] B. Yang, Y. Chen, “Dynamics of rogue waves in the partially $\mathcal{PT}$-symmetric nonlocal Davey–Stewartson systems”, Commun. Nonlinear Sci. Numer. Simul., 69 (2019), 287–303 | DOI | MR

[26] V. S. Gerdzhikov, G. G. Grakhovski, R. I. Ivanov, “$N$-volnovye uravneniya s $\mathcal{PT}$-simmetriei”, TMF, 188:3 (2016), 397–415 | DOI | DOI | MR

[27] Z.-X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488 | DOI | MR

[28] Y. Cao, B. A. Malomed, J. He, “Two $(2+1)$-dimensional integrable nonlocal nonlinear Schrödinger equations: breather, rational and semi-rational solution”, Chaos, Solitons and Fractals, 114 (2018), 99–107, arXiv: 1806.11107 | DOI | MR

[29] W. Liu, X. Li, “General soliton solutions to a $(2+1)$-dimensional nonlocal nonlinear Schrödinger equation with zero and nonzero boundary conditions”, Nonlinear Dynamics, 93:2 (2018), 721–731 | DOI

[30] Y. Cao, J. Rao, D. Mihalache, J. He, “Semi-rational solutions for the $(2+1)$-dimensional nonlocal Fokas system”, Appl. Math. Lett., 80 (2018), 27–34 | DOI | MR

[31] Q. Zhang, Y. Zhang, R. Ye, “Exact solutions of nonlocal Fokas–Lenells equation”, Appl. Math. Lett., 98 (2019), 336–343 | DOI | MR

[32] V. S. Gerdjikov, “On the Integrability of Ablowitz–Ladik models with local and nonlocal reductions”, J. Phys.: Conf. Ser., 1205 (2019), 012015, 8 pp. | DOI

[33] V. B. Matveev, A. O. Smirnov, “Resheniya tipa ‘voln-ubiits’ uravnenii ierarkhii Ablovitsa–Kaupa–Nyuella–Sigura: edinyi podkhod”, TMF, 186:2 (2016), 191–220 | DOI | DOI | MR

[34] V. B. Matveev, A. O. Smirnov, “AKNS and NLS hierarchies, MRW solutions, $P_n$ breathers, and beyond”, J. Math. Phys., 59:9 (2018), 091419, 42 pp. | DOI | MR

[35] V. B. Matveev, A. O. Smirnov, “Two-phase periodic solutions to the AKNS hierarchy equations”, J. Math. Sci., 242:5 (2019), 722–741 | DOI

[36] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-geometrical Approach to Nonlinear Evolution Equations, Springer, Berlin, 1994

[37] B. Yang, J. Yang, “On general rogue waves in the parity-time-symmetric nonlinear Schrödinger equation”, J. Math. Anal. Appl., 487:2 (2020), 124023, 23 pp., arXiv: 1903.06203 | DOI | MR

[38] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform–Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR

[39] M. Lakshmanan, K. Porsezian, M. Daniel, “Effect of discreteness on the continuum limit of the Heisenberg spin chain”, Phys. Lett. A, 133:9 (1988), 483–488 | DOI

[40] K. Porsezian, M. Daniel, M. Lakshmanan, “On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain”, J. Math. Phys., 33:5 (1992), 1807–1816 | DOI | MR

[41] M. Daniel, K. Porsezian, M. Lakshmanan, “On the integrable models of the higher order water wave equation”, Phys. Lett. A, 174:3 (1993), 237–240 | DOI | MR

[42] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14:7 (1973), 805–809 | DOI | MR

[43] C. Q. Dai, J. F. Zhang, “New solitons for the Hirota equation and generalized higher-order nonlinear Schrodinger equation with variable coefficients”, J. Phys. A: Math. Theor., 39:4 (2006), 723–737 | DOI | MR

[44] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR

[45] L. Li, Z. Wu, L. Wang, J. He, “High-order rogue waves for the Hirota equation”, Ann. Phys., 334 (2013), 198–211 | DOI | MR

[46] J. S. He, Ch. Zh. Li, K. Porsezian, “Rogue waves of the Hirota and the Maxwell–Bloch equations”, Phys. Rev. E, 87:1 (2013), 012913, arXiv: 1205.1191 | DOI

[47] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6(198) (1977), 183–208 | DOI | MR | Zbl

[48] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | MR | Zbl

[49] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl