Centers of generalized reflection equation algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 355-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As is known, in the reflection equation (RE) algebra associated with an involutive or Hecke $R$-matrix, the elements $\operatorname{Tr}_RL^k$ (called quantum power sums) are central. Here, $L$ is the generating matrix of this algebra, and $\operatorname{Tr}_R$ is the operation of taking the $R$-trace associated with a given $R$-matrix. We consider the problem of whether this is true in certain RE-like algebras depending on a spectral parameter. We mainly study algebras similar to those introduced by Reshetikhin and Semenov-Tian-Shansky (we call them algebras of RS type). These algebras are defined using some current $R$-matrices (i.e., depending on parameters) arising from involutive and Hecke $R$-matrices by so-called Baxterization. In algebras of RS type. we define quantum power sums and show that the lowest quantum power sum is central iff the value of the “charge” $c$ in its definition takes a critical value. This critical value depends on the bi-rank $(m|n)$ of the initial $R$-matrix. Moreover, if the bi-rank is equal to $(m|m)$ and the charge $c$ has a critical value, then all quantum power sums are central.
Keywords: reflection equation algebra, algebra of Reshetikhin–Semenov-Tian-Shansky type, charge, quantum powers of the generating matrix, quantum power sum.
@article{TMF_2020_204_3_a2,
     author = {D. I. Gurevich and P. A. Saponov},
     title = {Centers of generalized reflection equation algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--366},
     year = {2020},
     volume = {204},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a2/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - P. A. Saponov
TI  - Centers of generalized reflection equation algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 355
EP  - 366
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a2/
LA  - ru
ID  - TMF_2020_204_3_a2
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A P. A. Saponov
%T Centers of generalized reflection equation algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 355-366
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a2/
%G ru
%F TMF_2020_204_3_a2
D. I. Gurevich; P. A. Saponov. Centers of generalized reflection equation algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 355-366. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a2/

[1] A. Isaev, O. Ogievetsky, P. Pyatov, “On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities”, J. Phys. A: Math. Gen., 32:9 (1999), L115–L121 | DOI | MR

[2] I. V. Cherednik, “Faktorizuyuschiesya chastitsy na polupryamoi i sistemy kornei”, TMF, 61:1 (1984), 35–44 | DOI | MR | Zbl

[3] E. K. Sklyanin, “Boundary condition for integrable quantum system”, J. Phys. A: Math. Gen., 21:10 (1988), 2375–2389 | DOI | MR

[4] P. P. Kulish, E. K. Sklyanin, “Algebraic structures related to reflection equation”, J. Phys. A: Math. Gen., 25:22 (1992), 5963–5975, arXiv: hep-th/9209054 | DOI | MR

[5] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[6] N. Yu. Reshetikhin, M. A. Semenov-Tian-Shansky, “Central extensions of quantum current groups”, Lett. Math. Phys., 19:2 (1990), 133–142 | DOI | MR

[7] D. V. Talalaev, “Kvantovaya sistema Godena”, Funkts. analiz i ego pril., 40:1 (2006), 86–91 | DOI | DOI | MR | Zbl

[8] D. Gurevich, P. Saponov, “Braided Yangians”, J. Geom. Phys., 138 (2019), 124–143 | DOI | MR

[9] D. Gurevich, P. Saponov, D. Talalaev, “Drinfeld–Sokolov reduction in quantum algebras: canonical form of generating matrices”, Lett. Math. Phys., 108:10 (2018), 2303–2314 | DOI | MR

[10] D. I. Gurevich, “Algebraicheskie aspekty kvantovogo uravneniya Yanga–Bakstera”, Algebra i analiz, 2:4 (1990), 119–148 | MR | Zbl

[11] S. Kožić, A. Molev, “Center of the quntum affine vertex algebra associated with trigonometrical $R$-matrix”, J. Phys. A: Math. Theor., 50:32 (2017), 325201, 21 pp., arXiv: 1611.06700 | DOI

[12] O. Ogievetsky, “Uses of quantum spaces”, Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, Patagonia, Argentina, January 10–21, 2000), Contemporary Mathematics, 294, eds. R. Coquereaux, A. García, R. Trinchero, AMS, Providence, RI, 2002, 161–232 | DOI | MR | Zbl

[13] H. H. Phung, “Poincaré series of quantum spaces associated to Hecke operators”, Acta Math. Vietnam., 24:2 (1999), 235–246 | MR

[14] V. Jones, “Baxterization”, Internat. J. Modern Phys. A, 6:12 (1991), 2035–2043 | DOI | MR