Relation between categories of representations of the super-Yangian
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 466-484 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the approach developed by Toledano Laredo and Gautam, we introduce analogues of the category $\mathfrak{O}$ for representations of the Yangian $Y_\hbar(A(m,n))$ of a special linear Lie superalgebra and the quantum loop superalgebra $U_q(LA(m,n))$. We investigate the relation between them and conjecture that these categories are equivalent.
Keywords: Yangian of Lie superalgebra, quantum loop superalgebra, Yangian module, category $\mathfrak{O}$ of representations, Lie superalgebra, Drinfeld polynomial
Mots-clés : quantum $R$-matrix.
@article{TMF_2020_204_3_a10,
     author = {V. A. Stukopin},
     title = {Relation between categories of representations of {the~super-Yangian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {466--484},
     year = {2020},
     volume = {204},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a10/}
}
TY  - JOUR
AU  - V. A. Stukopin
TI  - Relation between categories of representations of the super-Yangian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 466
EP  - 484
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a10/
LA  - ru
ID  - TMF_2020_204_3_a10
ER  - 
%0 Journal Article
%A V. A. Stukopin
%T Relation between categories of representations of the super-Yangian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 466-484
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a10/
%G ru
%F TMF_2020_204_3_a10
V. A. Stukopin. Relation between categories of representations of the super-Yangian. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 466-484. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a10/

[1] V. G. Kac, “A sketch of Lie superalgebra theory”, Commun. Math. Phys., 53:1 (1977), 31–64 | DOI | MR

[2] L. Frappat, A. Sciarrino, P. Sorba, Dictionary on Lie Algebras and Superalgebras, Academic Press, London, 2000 | MR

[3] V. G. Drinfel'd, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, CA, August 3–11, 1986), v. 1, ed. A. M. Gleason, ICM, Berkley, CA, 1988, 789–820 | MR | Zbl

[4] V. G. Drinfeld, “Algebry Khopfa i kvantovoe uravnenie Yanga–Bakstera”, Dokl. AN SSSR, 283:5 (1985), 1060–1064 | MR | Zbl

[5] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl

[6] V. Chari, A. Pressley, A Quide to Quantum Groups, Cambridge Univ.Press, Cambridge, 1995 | MR

[7] V. G. Drinfeld, “Vyrozhdennye affinnye algebry Gekke i yangiany”, Funkts. analiz i ego prilozh., 20:1 (1986), 69–70 | DOI | MR | Zbl

[8] A. I. Molev, “Yangians and their applications”, Handbook of Algebra, 3 (2003), 907–959, arXiv: math.QA/0211288 | DOI | MR

[9] A. I. Molev, Yangiany i klassicheskie algebry Li, MTsNMO, M., 2009

[10] V. A. Stukopin, “O yangianakh superalgebr Li tipa $A(m,n)$”, Funkts. analiz i ego pril., 28:3 (1994), 85–88 | DOI | MR | Zbl

[11] M. L. Nazarov, “Quantum Berezinian and the classical Capelly identity”, Lett. Math. Phys., 21:2 (1991), 123–131 | DOI | MR

[12] L. Dolan, Ch. R. Nappi, E. Witten, “Yangian symmetry in $D=4$ superconformal Yang–Mills theory”, Quantum Theory and Symmetries (Cincinnati, Ohio, USA, 10–14 September, 2003), eds. P. C. Argyres, L. C. R. Wijewardhana, F. Mansouri, J. J. Scanio, T. J. Hodges, P. Suranyi, World Sci., Singapore, 2004, 300–315, arXiv: hep-th/0401243 | DOI | MR

[13] F. Spill, A. Torrielli, “On Drinfeld's second realization of the AdS/CFT $\mathfrak{su}(2|2)$ Yangian”, J. Geom. Phys., 59:4 (2009), 489–502, arXiv: 0803.3194 | DOI | MR

[14] S. Gautam, V. Toledano Laredo, “Yangians and quantum loop algebras”, Selecta Math., 19:3 (2013), 271–336 | DOI | MR

[15] S. Gautam, V. Toledano Laredo, “Yangians, quantum loop algebras and abelian difference equations”, J. Amer. Math. Soc., 29:3 (2016), 775–824 | DOI | MR | Zbl

[16] S. Gautam, V. Toledano Laredo, “Meromorphic tensor equivalence for Yangians and quantum loop algebras”, Publ. Math. Inst. Hautes Études Sci., 125 (2017), 267–337 | DOI | MR

[17] V. A. Stukopin, “Ob izomorfizme yangiana $Y_\hbar(A(m,n))$ spetsialnoi lineinoi superalgebry Li i kvantovoi petelevoi superalgebry $U_q(LA(m,n))$”, TMF, 198:1 (2019), 145–161 | DOI | DOI

[18] V. A. Stukopin, “O predstavleniyakh yangiana superalgebry Li tipa $A(m,n)$”, Izv. RAN. Ser. matematika, 77:5 (2013), 179–202 | DOI | DOI | MR | Zbl

[19] V. A. Stukopin, “On representations of Yangian of Lie superalgebra $A(n,n)$ type”, J. Phys.: Conf. Ser., 411 (2013), 012027, 13 pp. | DOI

[20] H. Nakajima, “Quiver varieties and finite dimensional representations of quantum affine algebras”, J. Amer. Math. Soc., 14:1 (1991), 145–238 | DOI | MR

[21] V. Stukopin, “Yangian of the strange Lie superalgebra of $Q_{n-1}$ type, Drinfel'd approach”, SIGMA, 3 (2007), 069, 12 pp., arXiv: 0705.3250 | DOI | MR

[22] V. A. Stukopin, “Skruchennye yangiany, podkhod Drinfelda”, Sovr. matem. i ee prilozheniya, 60 (2008), 145–162 | DOI | MR

[23] V. A. Stukopin, “Yangian strannoi superalgebry Li i ego kvantovyi dubl”, TMF, 174:1 (2013), 140–153 | DOI | DOI | MR | Zbl

[24] H. Zhang, “Representations of quantum affine superalgebras”, Math. Z., 278 (2014), 3–4 | DOI | MR

[25] V. Stukopin, “On the relationship between super Yangian and quantum loop superalgebra in the case Lie superalgebra $\mathfrak{sl}(1,1)$”, J. Phys.: Conf. Ser., 1194 (2019), 012103, 14 pp. | DOI

[26] S.-J. Kang, M. Kashiwara, S.-J. Oh, “Supercategorification of quantum Kac–Moody algebras II”, Adv. Math., 265 (2014), 169–240 | DOI | MR

[27] J. Brundan, A. P. Ellis, “Monoidal supercategories”, Commun. Math. Phys., 351:3 (2017), 1045–1089 | DOI | MR

[28] V. A. Stukopin, “O duble yangiana superalgebry Li tipa $A(m,n)$”, Funkts. analiz i ego pril., 40:2 (2006), 86–90 | DOI | DOI | MR | Zbl

[29] V. A. Stukopin, “Kvantovyi dubl yangiana superalgebry Li tipa $A(m,n)$ i vychislenie universalnoi $R$-matritsy”, Fundament. i prikl. matem., 11:2 (2005), 185–208 | DOI | MR | Zbl