Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 332-354 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct three nonequivalent gradings in the algebra $D_4\simeq so(8)$. The first is the standard grading obtained with the Coxeter automorphism $C_1=S_{\alpha_2}S_{\alpha_1}S_{\alpha_3}S_{\alpha_4}$ using its dihedral realization. In the second, we use $C_2=C_1R$, where $R$ is the mirror automorphism. The third is $C_3=S_{\alpha_2}S_{\alpha_1}T$, where $T$ is the external automorphism of order 3. For each of these gradings, we construct a basis in the corresponding linear subspaces $\mathfrak{g}^{(k)}$, the orbits of the Coxeter automorphisms, and the related Lax pairs generating the corresponding modified Korteweg–de Vries (mKdV) hierarchies. We find compact expressions for each of the hierarchies in terms of recursion operators. Finally, we write the first nontrivial mKdV equations and their Hamiltonians in explicit form. For $D_4^{(1)}$, these are in fact two mKdV systems because the exponent 3 has the multiplicity two in this case. Each of these mKdV systems consists of four equations of third order in $\partial_x$. For $D_4^{(2)}$, we have a system of three equations of third order in $\partial_x$. For $D_4^{(3)}$, we have a system of two equations of fifth order in $\partial_x$.
Keywords: mKdV equation, recursion operator, Kac–Moody algebra, hierarchy of integrable equations.
@article{TMF_2020_204_3_a1,
     author = {V. S. Gerdjikov and A. A. Stefanov and I. D. Iliev and G. P. Boyadjiev and A. O. Smirnov and V. B. Matveev and M. V. Pavlov},
     title = {Recursion operators and hierarchies of $\text{mKdV}$ equations related to {the~Kac{\textendash}Moody} algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {332--354},
     year = {2020},
     volume = {204},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a1/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - A. A. Stefanov
AU  - I. D. Iliev
AU  - G. P. Boyadjiev
AU  - A. O. Smirnov
AU  - V. B. Matveev
AU  - M. V. Pavlov
TI  - Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 332
EP  - 354
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a1/
LA  - ru
ID  - TMF_2020_204_3_a1
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A A. A. Stefanov
%A I. D. Iliev
%A G. P. Boyadjiev
%A A. O. Smirnov
%A V. B. Matveev
%A M. V. Pavlov
%T Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 332-354
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a1/
%G ru
%F TMF_2020_204_3_a1
V. S. Gerdjikov; A. A. Stefanov; I. D. Iliev; G. P. Boyadjiev; A. O. Smirnov; V. B. Matveev; M. V. Pavlov. Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 332-354. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a1/

[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[2] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR

[3] Zakharov V. E., Shabat A. B., “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinoi srede”, ZhETF, 61:1 (1971), 118–134 | MR

[4] M. Wadati, “The exact solution of the modified Korteweg–de Vries equation”, J. Phys. Soc. Japan, 32:6 (1972), 1681–1687 | DOI

[5] V. E. Zakharov, L. D. Faddeev, “Uravnenie Kortevega–de Frisa — vpolne integriruemaya gamiltonova sistema”, Funkts. analiz i ego pril., 5:4 (1971), 18–27 | DOI | MR | Zbl

[6] L. A. Takhtadzhyan, “Gamiltonovy sistemy, svyazannye s uravneniem Diraka”, Zap. nauchn. sem. LOMI, 37 (1973), 66–76 | MR | Zbl

[7] R. K. Bullough, P. J. Caudrey (eds.), Solitons, Topics in Current Physics, 17, Springer, Berlin–Heidelberg, 1980 | DOI

[8] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform–Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR

[9] D. J. Kaup, “Closure of the squared Zakharov–Shabat eigenstates”, J. Math. Anal. Appl., 54:3 (1976), 849–864 | DOI | MR

[10] V. S. Gerdjikov, E. Kh. Khristov, “On the evolution equations, solvable through the inverse scattering method. I. Spectral theory”, Bulgar. J. Phys., 7:1 (1980), 28–41 | MR

[11] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR

[12] I. D. Iliev, E. Kh. Khristov, K. P. Kirchev, Spectral Methods in Soliton Equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, 73, Longman Scientific and Technical, Harlow, 1994 | MR

[13] V. E. Zakharov, S. V. Manakov, “K teorii rezonansnogo vzaimodeistviya volnovykh paketov v nelineinykh sredakh”, ZhETF, 69:5 (1975), 1654–1673 | MR

[14] V. E. Zakharov, A. V. Mikhailov, “On the integrability of classical spinor models in two-dimensional space-time”, Commun. Math. Phys., 74:1 (1980), 21–40 | DOI | MR

[15] E. A. Kuznetsov, A. V. Mikhailov, “O polnoi integriruemosti dvumernoi klassicheskoi modeli Tirringa”, TMF, 30:3 (1977), 303–314 | DOI | MR

[16] C. Athorne, A. Fordy, “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20:6 (1987), 1377–1386 | DOI | MR

[17] I. T. Gadzhiev, V. S. Gerdzhikov, M. I. Ivanov, “Gamiltonovy struktury nelineinykh evolyutsionnykh uravnenii, svyazannykh s polinomialnym puchkom”, Zap. nauchn. sem. LOMI, 120 (1982), 55–68 | DOI | MR | Zbl

[18] V. S. Gerdjikov, M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. I. Expansions in ‘squares’ of solutions – generalized Fourier transforms”, Bulgar. J. Phys., 10:1 (1983), 13–26 | MR

[19] V. S. Gerdjikov, M. I. Ivanov, “A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures”, Bulgar. J. Phys., 10:2 (1983), 130–143 | MR

[20] V. S. Gerdzhikov, M. I. Ivanov, P. P. Kulish, “Kvadratichnyi puchok i nelineinye uravneniya”, TMF, 44:3 (1980), 342–357 | DOI | MR | Zbl

[21] I. M. Gelfand, B. M. Levitan, “Ob opredelenii differentsialnogo uravneniya po ego spektralnoi funktsii”, Izv. AN SSSR. Ser. matem., 15:4 (1951), 309–360 | MR | Zbl

[22] A. B. Shabat, “Obratnaya zadacha rasseyaniya dlya sistemy differentsialnykh uravnenii”, Funkts. analiz i ego pril., 9:3 (1975), 75–78 | DOI | MR | Zbl

[23] A. B. Shabat, “Obratnaya zadacha rasseyaniya”, Differents. uravneniya, 15:10 (1979), 1824–1834 | MR | Zbl

[24] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl

[25] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[26] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[27] V. S. Gerdjikov, P. P. Kulish, “The generating operator for the $n \times n$ linear system”, Phys. D, 3:3 (1981), 549–564 | DOI | MR

[28] V. S. Gerdjikov, “Generalised Fourier transforms for the soliton equations. Gauge-covariant formulation”, Inverse Problems, 2:1 (1986), 51–74 | DOI | MR

[29] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR

[30] V. S. Gerdjikov, “Basic aspects of soliton theory”, Geometry, Integrability and Quantization (Varna, Bulgaria, June 3–10, 2004), eds. I. M. Mladenov, A. C. Hirshfeld, Softex, Sofia, 2005, 78–125, arXiv: nlin.SI/0604004 | Zbl

[31] A. V. Zhiber, A. B. Shabat, “Sistemy uravnenii $u_x=p(u,\,v)$, $v_y=q(u,\,v)$, obladayuschie simmetriyami”, Dokl. AN SSSR, 277:1 (1984), 29–33 | MR | Zbl

[32] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, UMN, 42:4(256) (1987), 3–53 | DOI | MR | Zbl

[33] A. V. Mikhailov, V. S. Novikov, J. P. Wang, “Symbolic representation and classification of integrable systems”, Algebraic Theory of Differential Equations, London Mathematical Society Lecture Note Series, 357, eds. M. A. H. MacCallum, A. Mikhailov, Cambridge Univ. Press, Cambridge, 2008, 156–216 | DOI | MR

[34] G. Zhao, Integrability of two-component systems of partial differential equations, PhD thesis, University of Loughborough, unpublished

[35] G. Tzitzéica, “Sur une nouvelle classe de surfaces”, C. R. Acad. Sci. Paris, 150 (1910), 955–956, 1227–1229 | Zbl

[36] R. K. Dodd, R. K. Bullough, “Polynomial conserved densities for the sine-Gordon equations”, Proc. Roy. Soc. London Ser. A, 352:1671 (1977), 481–503 | DOI | MR

[37] A. V. Mikhailov, “The reduction problem and the inverse scattering method”, Phys. D, 3:1–2 (1981), 73–117 | DOI

[38] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, “Two-dimensional generalized Toda lattice”, Commun. Math. Phys., 79:4 (1981), 473–488 | DOI | MR

[39] R. Beals, R. Coifman, “Inverse scattering and evolution equations”, Commun. Pure Appl. Math., 38:1 (1985), 29–42 | DOI | MR

[40] V. S. Gerdjikov, A. B.Yanovski, “Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system”, J. Math. Phys., 35:7 (1994), 3687–3725 | DOI | MR

[41] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin–Heidelberg–New York, 2008 | DOI | MR

[42] V. S. Gerdjikov, A. B. Yanovski, “On soliton equations with $\mathbb{Z}_{ {h}}$ and $\mathbb{D}_{ {h}}$ reductions: conservation laws and generating operators”, J. Geom. Symmetry Phys., 31 (2013), 57–92 | DOI | MR

[43] V. S. Gerdjikov, A. B. Yanovski, “CBC systems with Mikhailov reductions by Coxeter automorphism: I. Spectral theory of the recursion operators”, Stud. Appl. Math., 134:2 (2015), 145–180 | DOI | MR

[44] V. G. Drinfeld, V. V. Sokolov, “Uravneniya tipa Kortevega–de Friza i prostye algebry Li”, Dokl. AN SSSR, 258:1 (1981), 11–16 | MR | Zbl

[45] V. G. Drinfeld, V. V. Sokolov, “Algebry Li i uravneniya tipa Kortevega–de Friza”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 24 (1984), 81–180 | DOI | MR | Zbl

[46] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “Soliton equations related to the Kac–Moody algebra $D_4^{(1)}$”, Eur. Phys. J. Plus, 130:6 (2015), 106, 17 pp. | DOI

[47] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “MKdV equations related to the $D_4^{(2)}$ algebra”, Roman. J. Phys., 61:1–2 (2016), 110–123

[48] S. Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, AMS, Providence, RI, 2012 | MR

[49] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge Studies in Advanced Mathematics, 96, Cambridge Univ. Press, Cambridge, 2005 | DOI | MR

[50] V. G. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, 1995 | DOI | MR

[51] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Extension of the module of invertible transformations. Classification of integrable systems”, Commun. Math. Phys., 115:1 (1988), 1–19 | DOI | MR

[52] L. A. Takhtadzhan, D. V. Fadeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR

[53] V. S. Gerdjikov, “Algebraic and analytic aspects of $N$-wave type equations”, The Legacy of the Inverse Scattering Transform in Applied Mathematics (South Hadley, MA, USA, June 17–21, 2001), Contemporary Mathematics, 301, eds. J. Bona, R. Choudhury, D. Kaup, AMS, Providence, RI, 2002, 35–68 | DOI | MR | Zbl

[54] Y. Nutku, M. V. Pavlov, “Multi-Lagrangians for integrable systems”, J. Math. Phys., 43:3 (2002), 1441–1460, arXiv: hep-th/0108214 | DOI | MR