Recursion operators and hierarchies of $\text{mKdV}$ equations related to the~Kac--Moody algebras $D_4^{(1)}$\!, $D_4^{(2)}$\!, and $D_4^{(3)}$
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 332-354
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct three nonequivalent gradings in the algebra $D_4\simeq so(8)$. The first is the standard grading obtained with the Coxeter automorphism $C_1=S_{\alpha_2}S_{\alpha_1}S_{\alpha_3}S_{\alpha_4}$ using its dihedral realization. In the second, we use $C_2=C_1R$, where $R$ is the mirror automorphism. The third is $C_3=S_{\alpha_2}S_{\alpha_1}T$, where $T$ is the external automorphism of order 3. For each of these gradings, we construct a basis in the corresponding linear subspaces $\mathfrak{g}^{(k)}$, the orbits of the Coxeter automorphisms, and the related Lax pairs generating the corresponding modified Korteweg–de Vries (mKdV) hierarchies. We find compact expressions for each of the hierarchies in terms of recursion operators. Finally, we write the first nontrivial mKdV equations and their Hamiltonians in explicit form. For $D_4^{(1)}$, these are in fact two mKdV systems because the exponent 3 has the multiplicity two in this case. Each of these mKdV systems consists of four equations of third order in $\partial_x$. For $D_4^{(2)}$, we have a system of three equations of third order in $\partial_x$. For $D_4^{(3)}$, we have a system of two equations of fifth order in $\partial_x$.
Keywords:
mKdV equation, recursion operator, Kac–Moody algebra, hierarchy of integrable equations.
@article{TMF_2020_204_3_a1,
author = {V. S. Gerdjikov and A. A. Stefanov and I. D. Iliev and G. P. Boyadjiev and A. O. Smirnov and V. B. Matveev and M. V. Pavlov},
title = {Recursion operators and hierarchies of $\text{mKdV}$ equations related to {the~Kac--Moody} algebras $D_4^{(1)}$\!, $D_4^{(2)}$\!, and $D_4^{(3)}$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {332--354},
publisher = {mathdoc},
volume = {204},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a1/}
}
TY - JOUR
AU - V. S. Gerdjikov
AU - A. A. Stefanov
AU - I. D. Iliev
AU - G. P. Boyadjiev
AU - A. O. Smirnov
AU - V. B. Matveev
AU - M. V. Pavlov
TI - Recursion operators and hierarchies of $\text{mKdV}$ equations related to the~Kac--Moody algebras $D_4^{(1)}$\!, $D_4^{(2)}$\!, and $D_4^{(3)}$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2020
SP - 332
EP - 354
VL - 204
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a1/
LA - ru
ID - TMF_2020_204_3_a1
ER -
%0 Journal Article
%A V. S. Gerdjikov
%A A. A. Stefanov
%A I. D. Iliev
%A G. P. Boyadjiev
%A A. O. Smirnov
%A V. B. Matveev
%A M. V. Pavlov
%T Recursion operators and hierarchies of $\text{mKdV}$ equations related to the~Kac--Moody algebras $D_4^{(1)}$\!, $D_4^{(2)}$\!, and $D_4^{(3)}$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 332-354
%V 204
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a1/
%G ru
%F TMF_2020_204_3_a1
V. S. Gerdjikov; A. A. Stefanov; I. D. Iliev; G. P. Boyadjiev; A. O. Smirnov; V. B. Matveev; M. V. Pavlov. Recursion operators and hierarchies of $\text{mKdV}$ equations related to the~Kac--Moody algebras $D_4^{(1)}$\!, $D_4^{(2)}$\!, and $D_4^{(3)}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 332-354. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a1/