Extensions of nonnatural Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 321-331 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of extended Hamiltonian systems allows a geometric interpretation of several integrable and superintegrable systems with polynomial first integrals of a degree depending on a rational parameter. Until now, the extension procedure has been applied only in the case of natural Hamiltonians. We give several examples of application to nonnatural Hamiltonians, such as the Hamiltonian of a system of two point-vortices, the Hamiltonian of the Lotka–Volterra model, and some Hamiltonians quartic in the momenta. We effectively obtain extended Hamiltonians in some cases, fail in other cases, and briefly discuss the reasons for these results.
Keywords: finite-dimensional Hamiltonian system, superintegrable system.
Mots-clés : constant of motion
@article{TMF_2020_204_3_a0,
     author = {C. M. Chanu and G. Rastelli},
     title = {Extensions of nonnatural {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {321--331},
     year = {2020},
     volume = {204},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a0/}
}
TY  - JOUR
AU  - C. M. Chanu
AU  - G. Rastelli
TI  - Extensions of nonnatural Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 321
EP  - 331
VL  - 204
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a0/
LA  - ru
ID  - TMF_2020_204_3_a0
ER  - 
%0 Journal Article
%A C. M. Chanu
%A G. Rastelli
%T Extensions of nonnatural Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 321-331
%V 204
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a0/
%G ru
%F TMF_2020_204_3_a0
C. M. Chanu; G. Rastelli. Extensions of nonnatural Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 321-331. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a0/

[1] C. Chanu, L. Degiovanni, G. Rastelli, “Polynomial constants of motion for Calogero-type systems in three dimensions”, J. Math. Phys., 52:3 (2011), 032903, 7 pp. | DOI | MR

[2] C. Chanu, L. Degiovanni, G. Rastelli, “First integrals of extended Hamiltonians in $n+1$ dimensions generated by powers of an operator”, SIGMA, 7 (2011), 038, 12 pp. | DOI | MR

[3] C. Chanu, L. Degiovanni, G. Rastelli, “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys.: Conf. Ser., 343 (2012), 012101, 16 pp., arXiv: 1111.0030 | DOI

[4] C. Chanu, L. Degiovanni, G. Rastelli, “Superintegrable extensions of superintegrable systems”, SIGMA, 8 (2012), 070, 12 pp. | DOI | MR

[5] C. Chanu, L. Degiovanni, G. Rastelli, “Extensions of Hamiltonian systems dependent on a rational parameter”, J. Math. Phys., 55:12 (2014), 122703, 11 pp., arXiv: 1310.5690 | DOI | MR

[6] C. Chanu, L. Degiovanni, G. Rastelli, “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55:12 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR

[7] C. Chanu, L. Degiovanni, G. Rastelli, “Extended Hamiltonians, coupling-constant metamorphosis and the Post–Winternitz system”, SIGMA, 11 (2015), 094, 9 pp. | DOI | MR

[8] C. M. Chanu, G. Rastelli, “Extended Hamiltonians and shift, ladder functions and operators”, Ann. Phys., 386 (2017), 254–274, arXiv: 1705.09519 | DOI | MR

[9] S. Ferrer, F. Crespo, “Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems”, J. Geom. Mech., 6:4 (2014), 479–502 | DOI | MR

[10] T. Kambe, Elementary Fluid Mechanics, World Sci., Singapore, 2007 | DOI | MR

[11] Y. Nutku, “Hamiltonian structure of the Lotka–Volterra equations”, Phys. Lett. A, 145:1 (1990), 27–28 | DOI | MR