Mots-clés : constant of motion
@article{TMF_2020_204_3_a0,
author = {C. M. Chanu and G. Rastelli},
title = {Extensions of nonnatural {Hamiltonians}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {321--331},
year = {2020},
volume = {204},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a0/}
}
C. M. Chanu; G. Rastelli. Extensions of nonnatural Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 3, pp. 321-331. http://geodesic.mathdoc.fr/item/TMF_2020_204_3_a0/
[1] C. Chanu, L. Degiovanni, G. Rastelli, “Polynomial constants of motion for Calogero-type systems in three dimensions”, J. Math. Phys., 52:3 (2011), 032903, 7 pp. | DOI | MR
[2] C. Chanu, L. Degiovanni, G. Rastelli, “First integrals of extended Hamiltonians in $n+1$ dimensions generated by powers of an operator”, SIGMA, 7 (2011), 038, 12 pp. | DOI | MR
[3] C. Chanu, L. Degiovanni, G. Rastelli, “Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization”, J. Phys.: Conf. Ser., 343 (2012), 012101, 16 pp., arXiv: 1111.0030 | DOI
[4] C. Chanu, L. Degiovanni, G. Rastelli, “Superintegrable extensions of superintegrable systems”, SIGMA, 8 (2012), 070, 12 pp. | DOI | MR
[5] C. Chanu, L. Degiovanni, G. Rastelli, “Extensions of Hamiltonian systems dependent on a rational parameter”, J. Math. Phys., 55:12 (2014), 122703, 11 pp., arXiv: 1310.5690 | DOI | MR
[6] C. Chanu, L. Degiovanni, G. Rastelli, “The Tremblay–Turbiner–Winternitz system as extended Hamiltonian”, J. Math. Phys., 55:12 (2014), 122701, 8 pp., arXiv: 1404.4825 | DOI | MR
[7] C. Chanu, L. Degiovanni, G. Rastelli, “Extended Hamiltonians, coupling-constant metamorphosis and the Post–Winternitz system”, SIGMA, 11 (2015), 094, 9 pp. | DOI | MR
[8] C. M. Chanu, G. Rastelli, “Extended Hamiltonians and shift, ladder functions and operators”, Ann. Phys., 386 (2017), 254–274, arXiv: 1705.09519 | DOI | MR
[9] S. Ferrer, F. Crespo, “Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems”, J. Geom. Mech., 6:4 (2014), 479–502 | DOI | MR
[10] T. Kambe, Elementary Fluid Mechanics, World Sci., Singapore, 2007 | DOI | MR
[11] Y. Nutku, “Hamiltonian structure of the Lotka–Volterra equations”, Phys. Lett. A, 145:1 (1990), 27–28 | DOI | MR