Two-photon propagation of light and the modified Liouville equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 297-304 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the system of nonlinear equations of two-photon propagation of light with real amplitudes of the envelopes can be solved in general form by the classical Liouville method. This system, like other similar systems of Darboux-integrable equations, is related to the modified Liouville equation, and the found solution also provides general solutions of such modified equations. We conclude that the Liouville method provides an effective way to integrate a class of concrete system that admit Darboux integration.
Keywords: Darboux integration, generalized Liouville equation, two-photon propagation of light.
@article{TMF_2020_204_2_a8,
     author = {A. M. Kamchatnov and M. V. Pavlov},
     title = {Two-photon propagation of light and the~modified {Liouville} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {297--304},
     year = {2020},
     volume = {204},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a8/}
}
TY  - JOUR
AU  - A. M. Kamchatnov
AU  - M. V. Pavlov
TI  - Two-photon propagation of light and the modified Liouville equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 297
EP  - 304
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a8/
LA  - ru
ID  - TMF_2020_204_2_a8
ER  - 
%0 Journal Article
%A A. M. Kamchatnov
%A M. V. Pavlov
%T Two-photon propagation of light and the modified Liouville equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 297-304
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a8/
%G ru
%F TMF_2020_204_2_a8
A. M. Kamchatnov; M. V. Pavlov. Two-photon propagation of light and the modified Liouville equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 297-304. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a8/

[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[2] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR

[3] N. Blombergen, Nelineinaya optika, Mir, M., 1966 | DOI | MR | Zbl

[4] I. R. Shen, Printsipy nelineinoi optiki, Nauka, M., 1989

[5] F. G. Bass, V. G. Sinitsyn, “Nestatsionarnaya teoriya generatsii vtoroi garmoniki”, Ukr. fiz. zhurn., 17 (1972), 124, 124–129

[6] J. Liouville, “Sur l'équation aux différences partielles $\frac{d^2\log\lambda}{du\,dv}\pm\frac{\lambda}{2a^2}=0$”, J. Math. Pure Appl., 18 (1853), 71–72

[7] H. Steudel, C. F. de Morisson Faria, M. G. A. Paris, A. M. Kamchatnov, O. Steuernagel, “Second harmonic generation: the solution for an amplitude-modulated initial pulse”, Opt. Commun., 150:1–6 (1998), 363–371 | DOI

[8] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1(337) (2001), 63–106 | DOI | DOI | MR | Zbl

[9] A. M. Kamchatnov, A. L. Chernyakov, “K teorii protochnykh usilitelei i rezonatorov”, Kvantovaya elektronika, 9:5 (1982), 947–952 | DOI

[10] V. V. Stepanov, Kurs differentsialnykh uravnenii, GITTL, M., 1953

[11] H. Steudel, D. J. Kaup, “Degenerate two-photon propagation and the oscillating two-stream instability: The general solution for amplitude-modulated pulses”, J. Modern Opt., 43:9 (1996), 1851–1866 | DOI

[12] E. Vessiot, “Sur les équations aux derivées partielles du second ordre, $F(x,y,z,p,q,\break r,s,t)=0$, intégrales par le méthode de Darboux”, J. Math. Pures Appl., 21 (1942), 1–66 | MR

[13] A. I. Maimistov, “Solitony v nelineinoi optike”, Kvantovaya elektronika, 40:9 (2010), 756–781 | DOI