Mots-clés : deformation quantization, Fedosov quantization.
@article{TMF_2020_204_2_a7,
author = {N. D. Gorev and B. M. Elfimov and A. A. Sharapov},
title = {Deformation quantization of framed presymplectic manifolds},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {280--296},
year = {2020},
volume = {204},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a7/}
}
TY - JOUR AU - N. D. Gorev AU - B. M. Elfimov AU - A. A. Sharapov TI - Deformation quantization of framed presymplectic manifolds JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 280 EP - 296 VL - 204 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a7/ LA - ru ID - TMF_2020_204_2_a7 ER -
N. D. Gorev; B. M. Elfimov; A. A. Sharapov. Deformation quantization of framed presymplectic manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 280-296. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a7/
[1] B. V. Fedosov, “A simple geometrical construction of deformation quantization”, J. Differ. Geom., 40:2 (1994), 213–238 | DOI | MR | Zbl
[2] B. V. Fedosov, Deformation Quantization and Index Theory, Mathematical Topics, 9, Akademie, Berlin, 1996 | MR
[3] M. A. Grigoriev, S. L. Lyakhovich, “Fedosov deformation quantization as a BRST theory”, Commun. Math. Phys., 218:2 (2001), 437–457 | DOI | MR
[4] I. A. Batalin, M. A. Grigorev, S. L. Lyakhovich, “$\ast$-Umnozhenie dlya sistem so svyazyami vtorogo roda iz BRST-teorii”, TMF, 128:3 (2001), 324–360 | DOI | DOI | MR | Zbl
[5] K. Bering, “Three natural generalizations of Fedosov quantization”, SIGMA, 5 (2009), 036, 21 pp. | DOI | MR | Zbl
[6] M. Bordemann, N. Neumaier, S. Waldmann, “Homogeneous Fedosov star products on cotangent bundles I: Weyl and standard ordering with differential operator representation”, Commun. Math. Phys., 198:2 (1998), 363–396, arXiv: q-alg/9707030 | DOI | MR
[7] A. V. Karabegov, M. Schlichenmaier, “Almost-Kähler deformation quantization”, Lett. Math. Phys., 57:2 (2001), 135–148 | DOI | MR
[8] V. A. Dolgushev, A. P. Isaev, S. L. Lyakhovich, A. A. Sharapov, “On the Fedosov deformation quantization beyond the regular Poisson manifolds”, Nucl. Phys. B, 645:3 (2002), 457–476 | DOI | MR
[9] S. L. Lyakhovich, A. A. Sharapov, “BRST quantization of quasi-symplectic manifolds and beyond”, J. Math. Phys., 47:4 (2006), 043508, 26 pp., arXiv: hep-th/0312075 | DOI | MR
[10] M. J. Gotay, J. Śniatycki, “On the quantization of presymplectic dynamical systems via coisotropic imbedding”, Commun. Math. Phys., 82:3 (1981), 377–389 | DOI | MR
[11] I. Vaisman, “Geometric quantization on presymplectic manifolds”, Monatsh. Math., 96:4 (1983), 293–310 | DOI | MR
[12] C. Crnković, E. Witten, “Covariant description of canonical formalism in geometrical theories”, Three Hundred Years of Gravitation, eds. S. W. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1987, 676–684 | MR
[13] G. J. Zuckerman, “Action principles and global geometry”, Mathematical Aspects of String Theory (University of California, San Diego July 21 – August 1, 1986), Advanced Series in Mathematical Physics, 1, ed. S. T. Yau, World Sci., Singapore, 1987, 259–284 | DOI | MR | Zbl
[14] T. J. Bridges, P. E. Hydon, J. K. Lawson, “Multisymplectic structures and the variational bicomplex”, Math. Proc. Cambridge Philos. Soc., 148:1 (2010), 159–178 | DOI | MR
[15] A. A. Sharapov, “Variational tricomplex, global symmetries and conservation laws of gauge systems”, SIGMA, 12 (2016), 098, 24 pp., arXiv: 1607.01626 | DOI | MR
[16] A. A. Sharapov, “On presymplectic structures for massless higher-spin fields”, Eur. Phys. J. C, 76:6 (2016), 305, 16 pp. | DOI
[17] Y. Agaoka, “On a generalization of Cartan's lemma”, J. Algebra, 127:2 (1989), 470–507 | DOI | MR
[18] D. B. Fuks, “Kogomologii beskonechnomernykh algebr Li i kharakteristicheskie klassy sloenii”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 10 (1978), 179–285 | DOI | MR | Zbl
[19] P. Tondeur, Geometry of Foliations, Monographs in Mathematics, 90, Birkhäuser, Basel, 1997 | DOI | MR
[20] A. G. Elashvili, “Frobeniusovy algebry Li”, Funkts. analiz i ego pril., 16:4 (1982), 94–95 | DOI | MR | Zbl