Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 258-279 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a "hard-core" model on a Cayley tree. In the case of a normal divisor of index 4, we show the uniqueness of weakly periodic Gibbs measures under certain conditions on the parameters. Moreover, we prove that there exist weakly periodic (nonperiodic) Gibbs measures different from those previously known.
Keywords: Cayley tree, hard-core model, Gibbs measure, translation-invariant measure, periodic measure, weakly periodic measure.
Mots-clés : configuration
@article{TMF_2020_204_2_a6,
     author = {R. M. Khakimov and M. T. Makhammadaliev},
     title = {Uniqueness and nonuniqueness conditions for weakly periodic {Gibbs} measures for the hard-core model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {258--279},
     year = {2020},
     volume = {204},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a6/}
}
TY  - JOUR
AU  - R. M. Khakimov
AU  - M. T. Makhammadaliev
TI  - Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 258
EP  - 279
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a6/
LA  - ru
ID  - TMF_2020_204_2_a6
ER  - 
%0 Journal Article
%A R. M. Khakimov
%A M. T. Makhammadaliev
%T Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 258-279
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a6/
%G ru
%F TMF_2020_204_2_a6
R. M. Khakimov; M. T. Makhammadaliev. Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 258-279. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a6/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Mathematics, 68, Cambridge Univ. Press, Cambridge, 1974 | MR

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl

[4] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl

[5] P. M. Blekher, N. N. Ganikhodzhaev, “O chistykh fazakh modeli Izinga na reshetkakh Bete”, Teoriya veroyatn. i ee primen., 35:2 (1990), 220–230 | DOI | MR | Zbl

[6] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice”, J. Statist. Phys., 79:1–2 (1995), 473–482 | DOI | MR

[7] A. E. Mazel, Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Statist. Phys., 64:1–2 (1991), 111–134 | DOI | MR

[8] Yu. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR

[9] J. B. Martin, “Reconstruction thresholds on regular trees”, Discrete Random Walks (Paris, France, September 1–5, 2003), eds. C. Banderier, C. Krattenthaler, Maison de l'Informatique et des Mathématiques Discrètes, Paris, 2003, 191–204 | MR | Zbl

[10] U. A. Rozikov, R. M. Khakimov, “Krainost translyatsionno-invariantnoi mery Gibbsa dlya NS-modeli na dereve Keli”, Byulleten In-ta matem., 2019, no. 2, 17–22

[11] U. A. Rozikov, R. M. Khakimov, “Uslovie edinstvennosti slabo periodicheskoi gibbsovskoi mery dlya modeli zhestkoi serdtseviny”, TMF, 173:1 (2012), 60–70 | DOI | DOI | MR

[12] R. M. Khakimov, “Edinstvennost slabo periodicheskoi gibbsovskoi mery dlya HC-modeli”, Mat. zametki, 94:5 (2013), 796–800 | DOI | DOI | MR | Zbl

[13] R. M. Khakimov, “Slabo periodicheskie mery Gibbsa dlya NS-modeli dlya normalnogo delitelya indeksa chetyre”, Ukr. matem. zhurn., 67:10 (2015), 1409–1422

[14] R. M. Khakimov, “Slabo periodicheskie mery Gibbsa dlya NS-modelei na dereve Keli”, Sib. matem. zhurn., 59:1 (2018), 185–196 | DOI | DOI

[15] R. M. Khakimov, G. T. Madgoziyev, “Weakly periodic Gibbs measures for two and three state HC models on a Cayley tree”, Uzb. Math. J., 2018, no. 3, 116–131 | DOI | MR

[16] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, “A three state hard-core model on a Cayley tree”, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR

[17] U. A. Rozikov, Sh. A. Shoyusupov, “Plodorodnye HC-modeli s tremya sostoyaniyami na dereve Keli”, TMF, 156:3 (2008), 412–424 | DOI | DOI | MR | Zbl

[18] R. M. Khakimov, “Translyatsionno-invariantnye mery Gibbsa dlya plodorodnykh HC-modelei s tremya sostoyaniyami na dereve Keli”, TMF, 183:3 (2015), 441–449 | DOI | DOI | MR

[19] U. A. Rozikov, R. M. Khakimov, “Gibbs measures for the fertile three-state hard core models on a Cayley tree”, Queueing Syst., 81:1 (2015), 49–69 | DOI | MR

[20] N. Ganikhodjaev, F. Mukhamedov, J. F. F. Mendes, “On the three state Potts model with competing interactions on the Bethe lattice”, J. Stat. Mech., 2006 (2006), P08012, 29 pp., arXiv: math-ph/0607006 | DOI

[21] N. N. Ganikhodzhaev, U. A. Rozikov, “Opisanie periodicheskikh krainikh gibbsovskikh mer nekotorykh reshetochnykh modelei na dereve Keli”, TMF, 111:1 (1997), 109–117 | DOI | DOI | MR | Zbl

[22] U. A. Rozikov, M. M. Rakhmatullaev, “Opisanie slabo periodicheskikh mer Gibbsa modeli Izinga na dereve Keli”, TMF, 156:2 (2008), 292–302 | DOI | DOI | MR | Zbl

[23] H. Kesten, “Quadratic transformations: a model for population growth. I”, Adv. Appl. Probab., 2:1 (1970), 1–82 | DOI | MR