Convergent perturbation theory for studying phase transitions
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 226-241

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method for constructing a perturbation theory with a finite radius of convergence for a rather wide class of quantum field models traditionally used to describe critical and near-critical behavior in problems in statistical physics. For the proposed convergent series, we use an instanton analysis to find the radius of convergence and also indicate a strategy for calculating their coefficients based on the diagrams in the standard (divergent) perturbation theory. We test the approach in the example of the standard stochastic dynamics $\mathrm A$-model and a matrix model of the phase transition in a system of nonrelativistic fermions, where its application allows explaining the previously observed quasiuniversal behavior of the trajectories of a first-order phase transition.
Keywords: renormalization group, instanton analysis, convergent perturbation theory, superconductivity, critical behavior.
@article{TMF_2020_204_2_a4,
     author = {M. Yu. Nalimov and A. V. Ovsyannikov},
     title = {Convergent perturbation theory for studying phase transitions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--241},
     publisher = {mathdoc},
     volume = {204},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a4/}
}
TY  - JOUR
AU  - M. Yu. Nalimov
AU  - A. V. Ovsyannikov
TI  - Convergent perturbation theory for studying phase transitions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 226
EP  - 241
VL  - 204
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a4/
LA  - ru
ID  - TMF_2020_204_2_a4
ER  - 
%0 Journal Article
%A M. Yu. Nalimov
%A A. V. Ovsyannikov
%T Convergent perturbation theory for studying phase transitions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 226-241
%V 204
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a4/
%G ru
%F TMF_2020_204_2_a4
M. Yu. Nalimov; A. V. Ovsyannikov. Convergent perturbation theory for studying phase transitions. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 226-241. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a4/