Mots-clés : convergent perturbation theory
@article{TMF_2020_204_2_a4,
author = {M. Yu. Nalimov and A. V. Ovsyannikov},
title = {Convergent perturbation theory for studying phase transitions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {226--241},
year = {2020},
volume = {204},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a4/}
}
M. Yu. Nalimov; A. V. Ovsyannikov. Convergent perturbation theory for studying phase transitions. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 226-241. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a4/
[1] D. I. Kazakov, O. V. Tarasov, D. V. Shirkov, “Analiticheskoe prodolzhenie rezultatov teorii vozmuschenii modeli $g\varphi^4$ v oblast $g\gtrsim1$”, TMF, 38:1 (1979), 15–25 | DOI | MR
[2] M. V. Kompaniets, E. Panzer, “Minimally subtracted six-loop renormalization of $O(n)$-symmetric $\phi^4$ theory and critical exponents”, Phys. Rev. D, 96:3 (2017), 036016, 26 pp., arXiv: 1705.06483 | DOI | MR
[3] A. A. Vladimirov, D. I. Kazakov, O. V. Tarasov, “O vychislenii kriticheskikh indeksov metodami kvantovoi teorii polya”, ZhETF, 77:3 (1979), 1035–1045 | MR
[4] L. N. Lipatov, “Raskhodimost ryada teorii vozmuschenii i kvaziklassika”, ZhETF, 72:2 (1977), 411–427 | MR
[5] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 113, Oxford Univ. Press, Oxford, 2002 | DOI | MR | Zbl
[6] A. G. Ushveridze, “Skhodyaschayasya teoriya vozmuschenii dlya teorii polya”, YaF, 38:3(9) (1983), 798–809
[7] J. Honkonen, M. Nalimov, “Convergent expansion for critical exponents in the $O(n)$-symmetric $\phi^4$ model for large $\epsilon$”, Phys. Lett. B, 459:4 (1999), 582–588 | DOI
[8] J. Honkonen, M. Komarova, M. Nalimov, “Large order asymptotics and convergent perturbation theory for critical indexes of $\phi^4$ model in $4-\epsilon$ expansion”, Acta Phys. Slov., 52:4 (2002), 303–310, arXiv: hep-th/0207011
[9] V. K. Sazonov, “Convergent perturbation theory for lattice models with fermions”, Internat. J. Modern Phys. A, 31:13 (2016), 1650072 | DOI
[10] V. Sazonov, A. Ivanov, “Infinite lattice models by an expansion with a non-Gaussian initial approximation”, Phys. Lett. B, 796 (2019), 52–58, arXiv: 1806.01884 | DOI | MR
[11] M. V. Komarova, M. Yu. Nalimov, Yu. Khonkonen, “Temperaturnye funktsii Grina v fermi-sistemakh: sverkhprovodyaschii fazovyi perekhod”, TMF, 176:1 (2013), 89–97 | DOI | DOI | MR | Zbl
[12] G. A. Kalagov, M. Yu. Nalimov, M. V. Kompaniets, “Renormgruppovoe issledovanie sverkhprovodyaschego fazovogo perekhoda: asimptotika vysokikh poryadkov razlozhenii i rezultaty trekhpetlevykh raschetov”, TMF, 181:2 (2014), 374–386 | DOI | DOI | MR
[13] G. A. Kalagov, M. V. Kompaniets, M. Yu. Nalimov, “Renormalization-group investigation of a superconducting $U(r)$-phase transition using five loops calculations”, Nucl. Phys. B, 905 (2016), 16–44, arXiv: 1505.07360 | DOI
[14] P. C. Hohenberg, B. I. Halperin, “Theory of dynamic critical phenomena”, Rev. Modern Phys., 49:3 (1977), 435–479 | DOI
[15] Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, Yu. Khonkonen, “Kriticheskaya dinamika fazovogo perekhoda v sverkhtekuchee sostoyanie”, TMF, 200:2 (2019), 361–377 | DOI | DOI
[16] M. V. Komarova, M. Yu. Nalimov, “Asimptotika starshikh poryadkov teorii vozmuschenii: konstanty renormirovki $O(n)$-simmetrichnoi teorii $\phi^4$ v $(4-\epsilon)$-razlozhenii”, TMF, 126:3 (2001), 409–426 | DOI | DOI | MR | Zbl
[17] V. G. Makhankov, “On the existence of non-one-dimensional soliton-like solutions for some field theories”, Phys. Lett. A, 61:7 (1977), 431–432 | DOI
[18] N. V. Antonov, A. N. Vasilev, “Kvantovo-polevaya renormgruppa v zadache o rastuschei granitse razdela”, ZhETF, 108:3 (1995), 885–893
[19] A. N. Vasilev, M. Yu. Nalimov, “Analog razmernoi regulyarizatsii dlya rascheta renormgruppovykh funktsii v $1/n$-razlozhenii pri proizvolnoi razmernosti prostranstva”, TMF, 55:2 (1983), 163–175 | DOI
[20] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR
[21] P. C. Martin, E. D. Siggia, H. A. Rose, “Statistical dynamics of classical systems”, Phys. Rev. A, 8:1 (1973), 423–437 | DOI
[22] L. Ts. Adzhemyan, M. Dančo, M. Hnatič, E. V. Ivanova, M. V. Kompaniets, “Multi-loop calculations of anomalous exponents in the models of critical dynamics”, EPJ Web Conf., 108 (2016), 02004, 6 pp. | DOI