Optimal Evolution Time Generated by Pseudo-Hermitian Hamiltonian
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 211-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

If an initial state $|\psi_{\scriptscriptstyle\mathrm I}\rangle$ and a final state $|\psi_{\scriptscriptstyle\mathrm{F}}\rangle$ are given, then there exist many Hamiltonians under whose action $|\psi_{\scriptscriptstyle\mathrm I}\rangle$ evolves into $|\psi_{\scriptscriptstyle\mathrm F}\rangle$. In this case, the problem of the transition of $|\psi_{\scriptscriptstyle\mathrm I}\rangle$ to $|\psi_{\scriptscriptstyle \mathrm F}\rangle$ in the least time is very interesting. It was previously shown that for a Hermitian Hamiltonian, there is an optimum evolution time if $|\psi_{\scriptscriptstyle\mathrm I}\rangle$ and $|\psi_{\scriptscriptstyle\mathrm F}\rangle$ are orthogonal. But for a $PT$-symmetric Hamiltonian, this time can be arbitrarily small, which seems amazing. We discuss the optimum time evolution for pseudo-Hermitian Hamiltonians and obtain a lower bound for the evolution time under the condition that the Hamiltonian is bounded. The optimum evolution time can be attained in the case where two quantum states are orthogonal with respect to some inner product. The results in the Hermitian and pseudo-Hermitian cases coincide if the evolution is unitary with some well-defined inner product. We also analyze two previously studied examples and find that they are consistent with our theory. In addition, we give some explanations of our results with two examples.
Keywords: optimum time, Hermitian Hamiltonian, pseudo-Hermitian Hamiltonian, inner product, unitary evolution.
@article{TMF_2020_204_2_a3,
     author = {W H. Wang and Z. L. Chen and Y. Song and Y. J. Fan},
     title = {Optimal {Evolution} {Time} {Generated} by {Pseudo-Hermitian} {Hamiltonian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {211--225},
     year = {2020},
     volume = {204},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a3/}
}
TY  - JOUR
AU  - W H. Wang
AU  - Z. L. Chen
AU  - Y. Song
AU  - Y. J. Fan
TI  - Optimal Evolution Time Generated by Pseudo-Hermitian Hamiltonian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 211
EP  - 225
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a3/
LA  - ru
ID  - TMF_2020_204_2_a3
ER  - 
%0 Journal Article
%A W H. Wang
%A Z. L. Chen
%A Y. Song
%A Y. J. Fan
%T Optimal Evolution Time Generated by Pseudo-Hermitian Hamiltonian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 211-225
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a3/
%G ru
%F TMF_2020_204_2_a3
W H. Wang; Z. L. Chen; Y. Song; Y. J. Fan. Optimal Evolution Time Generated by Pseudo-Hermitian Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 211-225. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a3/

[1] A. Carlini, A. Hosoya, T. Koike, Y. Okudaira, “Time-optimal quantum evolution”, Phys. Rev. Lett., 96:6 (2006), 060503, 4 pp., arXiv: quant-ph/0511039 | DOI

[2] C. M. Bender, D. C. Brody, “Optimal time evolution for Hermitian and non-Hermitian Hamiltonians”, Time in Quantum Mechanics, v. 2, Lecture Notes in Physics, 789, eds. G. Muga, A. Ruschhaupt, A. del Campo, Springer, Berlin, 2009, 341–361, arXiv: 0808.1823 | DOI | MR

[3] D. C. Brody, D. W. Hook, “On optimum Hamiltonians for state transformations”, J. Phys. A: Math. Gen., 39:11 (2006), L167–L170 | DOI | MR

[4] J. Anandan, Y. Aharonov, “Geometry of quantum evolution”, Phys. Rev. Lett., 65:14 (1990), 1697–1700 | DOI | MR

[5] S. Deffner, E. Lutz, “Energy-time uncertainty relation for driven quantum systems”, J. Phys. A: Math. Theor., 46:33 (2013), 335302, 9 pp. | DOI | MR

[6] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 2, John Wiley and Sons, New York, 1969

[7] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl

[8] C. F. de Morisson Faria, A. Fring, “Time evolution of non-Hermitian Hamiltonian systems”, J. Phys. A: Math. Gen., 39:29 (2006), 9269–9289 | DOI | MR | Zbl

[9] S. Dey, A. Fring, L. Gouba, “$\mathcal{PT}$"-symmetric noncommutative spaces with minimal volume uncertainty relations”, J. Phys. A: Math. Theor., 45:38 (2012), 385302, 17 pp. | DOI | MR

[10] A. Mostafazadeh, “Pseudo-Hermiticity and generalized $PT$- and $CPT$-symmetries”, J. Math. Phys., 44:3 (2003), 974–989, arXiv: math-ph/0209018 | DOI | MR

[11] S. Albeverio, A. K. Motovilov, A. A. Shkalikov, “Bounds on variation of spectral subspace under $J$-self-adjoint perturbation”, Integr. Equ. Oper. Theory, 64:4 (2009), 455–486 | DOI | MR

[12] E. Caliceti, S. Graffi, “Reality and non-reality of the spectrum of $\mathcal{PT}$-symmetric operators: Operator-theoretic criteria”, Pramana J. Phys., 73:2 (2009), 241–249 | DOI

[13] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Prog. Phys., 70:6 (2007), 947–1018, arXiv: hep-th/0703096 | DOI

[14] H. X. Cao, Z. H. Guo, Z. L. Chen, “CPT-frames for non-Hermitian Hamiltonians”, Commun. Theor. Phys., 60:3 (2013), 328–334 | DOI | MR | Zbl

[15] Z. H. Guo, H. X. Cao, L. Lu, “Adiabatic approximation in $PT$-symmetric quantum mechanics”, Sci. China Phys. Mech. Astron., 57:10 (2014), 1835–1839 | DOI

[16] Ven-Khua Van, Khuai-Sin Tsao, Chzhen-Li Chen, “Adiabaticheskoe priblizhenie evolyutsii, porozhdennoi $A$-ravnomerno psevdoermitovym gamiltonianom”, TMF, 192:3 (2017), 489–505 | DOI | DOI | MR

[17] C. M. Bender, D. C. Brody, H. F. Jones, B. K. Meister, “Faster than Hermitian quantum mechanics”, Phys. Rev. Lett., 98:4 (2007), 040403, 4 pp., arXiv: quant-ph/0609032 | DOI | MR

[18] A. Mostafazadeh, “Quantum brachistichrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics”, Phys. Rev. Lett., 99:13 (2007), 130502, 4 pp., arXiv: 0706.3844 | DOI

[19] P. E. G. Assis, A. Fring, “The quantum brachistochrone problem for non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 41:24 (2008), 244002, 12 pp. | DOI | MR

[20] A. Mostafazadeh, “Exact $PT$-symmetry is equivalent to Hermiticity”, J. Phys. A: Math. Theor., 36:25 (2003), 7081–7091, arXiv: quant-ph/0304080 | DOI | MR

[21] S. Lee, $PT$-symmetric quantum mechanics is a Hermitian quantum mechanics, arXiv: 1312.7738

[22] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$ symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR | Zbl

[23] R. Zhang, H. Qin, J. Xiao, “PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability”, J. Math. Phys., 61:1 (2020), 012101, 6 pp. | DOI | MR

[24] Y. N. Dou, H. K. Du, “Generalizations of the Heisenberg and Schrödinger uncertainty relations”, J. Math. Phys., 54:10 (2013), 103508, 7 pp. | DOI | MR

[25] D. C. Brody, “Elementary derivation of passage times”, J. Phys. A: Math. Gen., 36:20 (2003), 5587–5593, arXiv: quant-ph/0302067 | DOI | MR