@article{TMF_2020_204_2_a3,
author = {W H. Wang and Z. L. Chen and Y. Song and Y. J. Fan},
title = {Optimal {Evolution} {Time} {Generated} by {Pseudo-Hermitian} {Hamiltonian}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {211--225},
year = {2020},
volume = {204},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a3/}
}
TY - JOUR AU - W H. Wang AU - Z. L. Chen AU - Y. Song AU - Y. J. Fan TI - Optimal Evolution Time Generated by Pseudo-Hermitian Hamiltonian JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 211 EP - 225 VL - 204 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a3/ LA - ru ID - TMF_2020_204_2_a3 ER -
W H. Wang; Z. L. Chen; Y. Song; Y. J. Fan. Optimal Evolution Time Generated by Pseudo-Hermitian Hamiltonian. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 211-225. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a3/
[1] A. Carlini, A. Hosoya, T. Koike, Y. Okudaira, “Time-optimal quantum evolution”, Phys. Rev. Lett., 96:6 (2006), 060503, 4 pp., arXiv: quant-ph/0511039 | DOI
[2] C. M. Bender, D. C. Brody, “Optimal time evolution for Hermitian and non-Hermitian Hamiltonians”, Time in Quantum Mechanics, v. 2, Lecture Notes in Physics, 789, eds. G. Muga, A. Ruschhaupt, A. del Campo, Springer, Berlin, 2009, 341–361, arXiv: 0808.1823 | DOI | MR
[3] D. C. Brody, D. W. Hook, “On optimum Hamiltonians for state transformations”, J. Phys. A: Math. Gen., 39:11 (2006), L167–L170 | DOI | MR
[4] J. Anandan, Y. Aharonov, “Geometry of quantum evolution”, Phys. Rev. Lett., 65:14 (1990), 1697–1700 | DOI | MR
[5] S. Deffner, E. Lutz, “Energy-time uncertainty relation for driven quantum systems”, J. Phys. A: Math. Theor., 46:33 (2013), 335302, 9 pp. | DOI | MR
[6] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, v. 2, John Wiley and Sons, New York, 1969
[7] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathcal{PT}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR | Zbl
[8] C. F. de Morisson Faria, A. Fring, “Time evolution of non-Hermitian Hamiltonian systems”, J. Phys. A: Math. Gen., 39:29 (2006), 9269–9289 | DOI | MR | Zbl
[9] S. Dey, A. Fring, L. Gouba, “$\mathcal{PT}$"-symmetric noncommutative spaces with minimal volume uncertainty relations”, J. Phys. A: Math. Theor., 45:38 (2012), 385302, 17 pp. | DOI | MR
[10] A. Mostafazadeh, “Pseudo-Hermiticity and generalized $PT$- and $CPT$-symmetries”, J. Math. Phys., 44:3 (2003), 974–989, arXiv: math-ph/0209018 | DOI | MR
[11] S. Albeverio, A. K. Motovilov, A. A. Shkalikov, “Bounds on variation of spectral subspace under $J$-self-adjoint perturbation”, Integr. Equ. Oper. Theory, 64:4 (2009), 455–486 | DOI | MR
[12] E. Caliceti, S. Graffi, “Reality and non-reality of the spectrum of $\mathcal{PT}$-symmetric operators: Operator-theoretic criteria”, Pramana J. Phys., 73:2 (2009), 241–249 | DOI
[13] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Prog. Phys., 70:6 (2007), 947–1018, arXiv: hep-th/0703096 | DOI
[14] H. X. Cao, Z. H. Guo, Z. L. Chen, “CPT-frames for non-Hermitian Hamiltonians”, Commun. Theor. Phys., 60:3 (2013), 328–334 | DOI | MR | Zbl
[15] Z. H. Guo, H. X. Cao, L. Lu, “Adiabatic approximation in $PT$-symmetric quantum mechanics”, Sci. China Phys. Mech. Astron., 57:10 (2014), 1835–1839 | DOI
[16] Ven-Khua Van, Khuai-Sin Tsao, Chzhen-Li Chen, “Adiabaticheskoe priblizhenie evolyutsii, porozhdennoi $A$-ravnomerno psevdoermitovym gamiltonianom”, TMF, 192:3 (2017), 489–505 | DOI | DOI | MR
[17] C. M. Bender, D. C. Brody, H. F. Jones, B. K. Meister, “Faster than Hermitian quantum mechanics”, Phys. Rev. Lett., 98:4 (2007), 040403, 4 pp., arXiv: quant-ph/0609032 | DOI | MR
[18] A. Mostafazadeh, “Quantum brachistichrone problem and the geometry of the state space in pseudo-Hermitian quantum mechanics”, Phys. Rev. Lett., 99:13 (2007), 130502, 4 pp., arXiv: 0706.3844 | DOI
[19] P. E. G. Assis, A. Fring, “The quantum brachistochrone problem for non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 41:24 (2008), 244002, 12 pp. | DOI | MR
[20] A. Mostafazadeh, “Exact $PT$-symmetry is equivalent to Hermiticity”, J. Phys. A: Math. Theor., 36:25 (2003), 7081–7091, arXiv: quant-ph/0304080 | DOI | MR
[21] S. Lee, $PT$-symmetric quantum mechanics is a Hermitian quantum mechanics, arXiv: 1312.7738
[22] A. Mostafazadeh, “Pseudo-Hermiticity versus $PT$ symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian”, J. Math. Phys., 43:1 (2002), 205–214, arXiv: math-ph/0107001 | DOI | MR | Zbl
[23] R. Zhang, H. Qin, J. Xiao, “PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability”, J. Math. Phys., 61:1 (2020), 012101, 6 pp. | DOI | MR
[24] Y. N. Dou, H. K. Du, “Generalizations of the Heisenberg and Schrödinger uncertainty relations”, J. Math. Phys., 54:10 (2013), 103508, 7 pp. | DOI | MR
[25] D. C. Brody, “Elementary derivation of passage times”, J. Phys. A: Math. Gen., 36:20 (2003), 5587–5593, arXiv: quant-ph/0302067 | DOI | MR