KNTZ trick from arborescent calculus and the structure of differential expansion
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 181-210 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The recently proposed Kameyama–Nawata–Tao–Zhang (KNTZ) trick completed the long search for exclusive Racah matrices $\overline S$ and $S$ for all rectangular representations. The success of this description is a remarkable achievement of modern knot theory and classical representation theory, which was initially considered a tool for knot calculus but instead turned out to be its direct beneficiary. We show that this approach in fact consists in converting the arborescent evolution matrix $\overline S\,\overline T^2\,\overline S$ into the triangular form $\mathcal B$, and we demonstrate how this works and show how the previous puzzles and miracles of the differential expansions look from this standpoint. Our conjecture for the form of the triangular matrix $\mathcal B$ in the case of the nonrectangular representation $[3,1]$ is completely new. No calculations are simplified in this case, but we explain how it all works and what remains to be done to completely prove the conjecture. The discussion can also be useful for extending the method to nonrectangular cases and for the related search for gauge-invariant arborescent vertices. As one more application, we present a puzzling, but experimentally supported, conjecture that the form of the differential expansion for all knots is completely described by a particular case of twist knots.
Keywords: knot polynomial, differential expansion
Mots-clés : Racah matrix.
@article{TMF_2020_204_2_a2,
     author = {A. Yu. Morozov},
     title = {KNTZ trick from arborescent calculus and the~structure of differential expansion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {181--210},
     year = {2020},
     volume = {204},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a2/}
}
TY  - JOUR
AU  - A. Yu. Morozov
TI  - KNTZ trick from arborescent calculus and the structure of differential expansion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 181
EP  - 210
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a2/
LA  - ru
ID  - TMF_2020_204_2_a2
ER  - 
%0 Journal Article
%A A. Yu. Morozov
%T KNTZ trick from arborescent calculus and the structure of differential expansion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 181-210
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a2/
%G ru
%F TMF_2020_204_2_a2
A. Yu. Morozov. KNTZ trick from arborescent calculus and the structure of differential expansion. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 181-210. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a2/

[1] N. M. Dunfield, S. Gukov, J. Rasmussen, “The superpolynomial for knot homologies”, Exp. Math., 15:2 (2006), 129–159, arXiv: math/0505662 | DOI | MR | Zbl

[2] H. Itoyama, A. Mironov, A. Morozov, An. Morozov, “HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations”, JHEP, 07 (2012), 131, 20 pp., arXiv: 1203.5978 | DOI | MR

[3] A. Mironov, A. Morozov, An. Morozov, “Evolution method and ‘differential hierarchy’ of colored knot polynomials”, AIP Conf. Proc., 1562:1 (2013), 123–155, arXiv: ; “On colored HOMFLY polynomials for twist knots”, Modern Phys. Lett. A, 29:34 (2014), 1450183, 11 pp., arXiv: 1306.31971408.3076 | DOI | DOI

[4] S. B. Artamonov, A. D. Mironov, A. Yu. Morozov, “Ierarkhiya differentsialov i dopolnitelnaya graduirovka polinomov uzlov”, TMF, 179:2 (2014), 147–188, arXiv: 1306.5682 | DOI | DOI

[5] J. W. Alexander, “Topological invariants of knots and links”, Trans. Amer. Math. Soc., 30:2 (1928) ; V. F. R. Jones, “Index for subfactors”, Invent. Math., 72:1 (1983), 1–25 ; “A polynomial invariant for knots via von Neumann algebras”, Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 103–111 ; “Hecke algebra representations of braid groups and link polynomials”, Ann. Math., 126:2 (1987), 335–388 ; L. H. Kauffman, “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 ; P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc. (N. S.), 12:2 (1985), 239–246 ; J. H. Przytycki, K. P. Traczyk, “Invariants of links of Conway type”, Kobe J. Math., 4:2 (1987), 115–139 ; А. Ю. Морозов, “Существуют ли $p$-адические инварианты узлов?”, ТМФ, 187:1 (2016), 3–11, arXiv: 1509.04928 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | DOI | MR | Zbl | MR | Zbl | DOI | DOI | Zbl

[6] E. Witten, “Quantum field theory and the Jones polynomial”, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl

[7] R. K. Kaul, T. R. Govindarajan, “Three-dimensional Chern–Simons theory as a theory of knots and links”, Nucl. Phys. B, 380:1–2 (1992), 293–333, arXiv: ; P. Rama Devi, T. R. Govindarajan, R. K. Kaul, “Three-dimensional Chern–Simons theory as a theory of knots and links (III). Compact semi-simple group”, Nucl. Phys. B, 402:1–2 (1993), 548–566, arXiv: ; P. Ramadevi, T. Sarkar, “On link invariants and topological string amplitudes”, Nucl. Phys. B, 600:3 (2001), 487–511, arXiv: hep-th/9111063hep-th/9212110hep-th/0009188 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[8] E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons field theory and quantum groups”, Quantum Groups, Proceedings of the 8th International Workshop on Mathematical Physics (Clausthal, Germany, July 19–26, 1989), Lecture Notes in Physics, 370, eds. H. D. Doebner, J. D. Hennig, World Sci., Singapore, 1990, 307–317 | DOI | MR | Zbl

[9] A. Morozov, “Factorization of differential expansion for antiparallel double-braid knots”, JHEP, 09 (2016), 135, 30 pp., arXiv: 1606.06015 | DOI | MR

[10] G. Racah, “Theory of complex spectra. II”, Phys. Rev., 62:9–10 (1942), 438–462 ; E. P. Wigner, “On the matrices which reduce the Kronecker products of representations of S. R. groups”, 1951 (unpublished), Quantum Theory of Angular Momentum: A Collection of Reprints and Original Papers, eds. L. C. Biedenharn, Jr., H. van Dam, Academic Press, New York, 1965, 87–133; Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, Pure and Applied Physics, 5, Academic Press, New York, 1959 ; Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. 3, Квантовая механика. Нерелятивистская теория, Наука, М., 1989 ; J. S. Carter, D. E. Flath, M. Saito, The Classical and Quantum $6j$-Symbols, Mathematical Notes, 43, Princeton Univ.Press, Princeton, NJ, 1995 ; S. Nawata, P. Ramadevi, Zodinmawia, “Multiplicity-free quantum $6j$-symbols for $U_q(\mathfrak{sl}_N)$”, Lett. Math. Phys., 103:12 (2013), 1389–1398, arXiv: ; A. Mironov, A. Morozov, A. Sleptsov, “Colored HOMFLY polynomials for the pretzel knots and links”, JHEP, 07 (2015), 069, 34 pp., arXiv: ; V. Alekseev, An. Morozov, A. Sleptsov, Interplay between symmetries of quantum 6-j symbols and the eigenvalue hypothesis, arXiv: ; Multiplicity-free $U_q(sl_N)$ 6-j symbols: relations, asymptotics, symmetries, arXiv: 1302.51431412.84321909.076011912.13325 | DOI | MR | Zbl | MR | MR | MR | DOI | DOI

[11] A. Mironov, A. Morozov, An. Morozov, P. Ramadevi, V. K. Singh, “Colored HOMFLY polynomials of knots presented as double fat diagrams”, JHEP, 07 (2015), 109, 68 pp., arXiv: ; S. Nawata, P. Ramadevi, V. K. Singh, Colored HOMFLY polynomials that distinguish mutant knots, arXiv: ; A. Mironov, R. Mkrtchyan, A. Morozov, “Universal Racah matrices and adjoint knot polynomials: Arborescent knots”, Phys. Lett. B, 755 (2016), 47–57, arXiv: 1504.003711504.003641511.09077 | DOI | DOI | MR | Zbl

[12] M. Kameyama, S. Nawata, R. Tao, H. D. Zhang, Cyclotomic expansions of HOMFLY-PT colored by rectangular Young diagrams, arXiv: 1902.02275

[13] A. Morozov, “On exclusive Racah matrices $\overline S$ for rectangular representations”, Phys. Lett. B, 793 (2019), 116–125, arXiv: 1902.04140 | DOI

[14] A. Morozov, “Extension of KNTZ trick to non-rectangular representations”, Phys. Lett. B, 793 (2019), 464–468, arXiv: 1903.00259 | DOI

[15] A. Morozov, “Pentad and triangular structures behind the Racah matrices”, Eur. Phys. J. Plus, 135:2 (2020), 196, arXiv: 1906.09971 | DOI

[16] S. Gukov, A. Schwarz, C. Vafa, “Khovanov–Rozansky homology and topological strings”, Lett. Math. Phys., 74:1 (2005), 53–74, arXiv: hep-th/0412243 | DOI | MR | Zbl

[17] M. Aganagic, Sh. Shakirov, Knot homology from refined Chern–Simons theory, arXiv: ; “Refined Chern–Simons theory and knot homology”, String-Math 2011, Proceedings of Symposia in Pure Mathematics, 85, eds. J. Block, J. Distler, R. Donagi, E. Sharpe, AMS, Providence, RI, 2012, 3–31, arXiv: ; Refined Chern–Simons theory and topological string, arXiv: ; P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, A. Smirnov, “Superpolynomials for torus knots from evolution induced by cut-and-join operators”, JHEP, 03 (2013), 021, 85 pp., arXiv: ; I. Cherednik, Jones polynomials of torus knots via DAHA, arXiv: 1105.51171202.24891210.27331106.43051111.6195 | DOI | MR | DOI | MR

[18] A. Okunkov, G. Olshanskii, “Sdvinutye funktsii Shura”, Algebra i analiz, 9:2 (1997), 73–146 | MR | Zbl

[19] A. Okounkov, Binomial formula for Macdonald polynomials, arXiv: q-alg/9608021

[20] E. Gorsky, S. Gukov, M. Stosic, “Quadruply-graded colored homology of knots”, Fund. Math., 243 (2018), 209–299, arXiv: 1304.3481 | DOI

[21] S. Nawata, A. Oblomkov, “Lectures on knot homology”, Physics and Mathematics of Link Homology (Centre de Recherches Mathématiques, Université de Montreal, Montreal, QC, June 24 – July 5, 2013), eds. S. Gukov, M. Khovanov, J. Walcher, AMS, Providence, RI, 2016, 137-177, arXiv: 1510.01795 | MR

[22] A. Anokhina, A. Morozov, “Are Khovanov–Rozansky polynomials consistent with evolution in the space of knots?”, JHEP, 04 (2018), 66, 29 pp., arXiv: ; P. Dunin-Barkowski, A. Popolitov, S. Popolitova, Evolution for Khovanov polynomials for figure-eight-like family of knots, arXiv: ; A. Anokhina, A. Morozov, A. Popolitov, “Nimble evolution for pretzel Khovanov polynomials”, Eur. Phys. J. C, 79:10 (2019), 867, 13 pp., arXiv: 1802.093831812.008581904.10277 | DOI | DOI

[23] D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, “Colored knot polynomials for arbitrary pretzel knots and links”, Phys. Lett. B, 743 (2015), 71–74, arXiv: ; A. Mironov, A. Morozov, A. Sleptsov, “Colored HOMFLY polynomials for the pretzel knots and links”, JHEP, 07 (2015), 069, 34 pp., arXiv: ; D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, “Knot invariants from Virasoro related representation and pretzel knots”, Nucl. Phys. B, 899 (2015), 194–228, arXiv: ; А. Миронов, А. Морозов, Ан. Морозов, А. Слепцов, “Квантовые матрицы Рака и $3$-нитевые косы в представлениях размера $4$”, Письма в ЖЭТФ, 104:1 (2016), 52–57, arXiv: ; Sh. Shakirov, A. Sleptsov, Quantum Racah matrices and $3$-strand braids in representation $[3,3]$, arXiv: ; S. Arthamonov, Sh. Shakirov, Genus two generalization of $A_1$ spherical DAHA, Selecta Math., 25, no. 2, 2019, 29 pp., arXiv: 1412.26161412.84321502.026211605.030981611.037971704.02947 | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | DOI

[24] A. Morozov, “Differential expansion and rectangular HOMFLY for the figure eight knot”, Nucl. Phys., 911 (2015), 582–605, arXiv: 1605.09728 | DOI

[25] Ya. A. Kononov, A. Yu. Morozov, “Superpolinomy v pryamougolnykh predstavleniyakh uzla $4_1$”, TMF, 193:2 (2017), 256–275 | DOI | DOI

[26] Ya. Kononov, A. Morozov, “On rectangular HOMFLY for twist knots”, Modern. Phys. Lett. A, 31:38 (2016), 1650223, 9 pp., arXiv: 1610.04778 | DOI

[27] A. Morozov, “Factorization of differential expansion for non-rectangular representations”, Modern. Phys. Lett. A, 33:12 (2018), 1850062, 19 pp., arXiv: 1612.00422 | DOI | MR | Zbl

[28] A. Morozov, “On moduli space of symmetric orthogonal matrices and exclusive Racah matrix $\overline S$ for representation $R=[3,1]$ with multiplicities”, Phys. Lett. B, 766 (2017), 291–300, arXiv: 1701.00359 | DOI

[29] A. Morozov, “HOMFLY for twist knots and exclusive Racah matrices in representation $[333]$”, Phys. Lett. B, 778 (2018), 426–434, arXiv: 1711.09277 | DOI

[30] A. Mironov, A. Morozov, An. Morozov, P. Ramadevi, V. Kumar Singh, A. Sleptsov, “Tabulating knot polynomials for arborescent knots”, J. Phys. A: Math. Theor., 50:8 (2017), 085201, 22 pp., arXiv: 1601.04199 | DOI | MR | Zbl

[31] K. Koike, “On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters”, Adv. Math., 74:1 (1989), 57–86 | DOI

[32] H. Kanno, “Universal character and large $N$ factorization in topological gauge/string theory”, Nucl. Phys. B, 745:3 (2006), 165–175, arXiv: ; A. Mironov, A. Morozov, “On the Hopf-induced deformation of topological locus”, Письма в ЖЭТФ, 107:11 (2018), 759–760, arXiv: ; “Kerov functions for composite representations and Macdonald ideal”, Nucl. Phys. B, 944 (2019), 114641, 35 pp., arXiv: ; H. Awata, H. Kanno, A. Mironov, A. Morozov, “Can tangle calculus be applicable to hyperpolynomials?”, Nucl. Phys. B, 949 (2019), 114816, 37 pp., arXiv: hep-th/06021791804.102311903.007731905.00208 | DOI | DOI | DOI | DOI

[33] Ya. Kononov, A. Morozov, “On the defect and stability of differential expansion”, Pisma v ZhETF, 101:12 (2015), 931–934, arXiv: 1504.07146 | DOI

[34] L. Bishler, A. Morozov, Perspectives of differential expansion, arXiv: 2006.01190

[35] J. Gu, H. Jockers, “A note on colored HOMFLY polynomials for hyperbolic knots from WZW models”, Commun. Math. Phys., 338:1 (2015), 393–456, arXiv: 1407.5643 | DOI

[36] A. Anokhina, A. Mironov, A. Morozov, An. Morozov, “Knot polynomials in the first non-symmetric representation”, Nucl. Phys. B, 882 (2014), 171–194, arXiv: 1211.6375 | DOI | MR | Zbl