Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 171-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the one-dimensional Schrödinger operator with a semiclassical small parameter $h$. We show that the "global" asymptotic form of its bound states in terms of the Airy function "works" not only for excited states $n\sim1/h$ but also for semi-excited states $n\sim1/h^\alpha$, $\alpha>0$, and, moreover, $n$ starts at $n=2$ or even $n=1$ in examples. We also prove that the closeness of such an asymptotic form to the eigenfunction of the harmonic oscillator approximation.
Keywords: bound state, Schrödinger operator, semiclassical approximation, asymptotics, eigenfunction, harmonic oscillator, Airy function.
@article{TMF_2020_204_2_a1,
     author = {A. Yu. Anikin and S. Yu. Dobrokhotov and A. V. Tsvetkova},
     title = {Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {171--180},
     year = {2020},
     volume = {204},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Anikin
AU  - S. Yu. Dobrokhotov
AU  - A. V. Tsvetkova
TI  - Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 171
EP  - 180
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a1/
LA  - ru
ID  - TMF_2020_204_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%A S. Yu. Dobrokhotov
%A A. V. Tsvetkova
%T Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 171-180
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a1/
%G ru
%F TMF_2020_204_2_a1
A. Yu. Anikin; S. Yu. Dobrokhotov; A. V. Tsvetkova. Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 171-180. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a1/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR

[2] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | MR

[3] B. Simon, “Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: asymptotic expansions”, Ann. Inst. H. Poincaré Sect. A (N. S.), 38:3 (1983), 295–308 | MR

[4] L. Charles, S. V. Ngọc, “Spectral asymptotics via the semiclassical Birkhoff normal form”, Duke Math. J., 143:3 (2008), 463–511 | DOI | MR

[5] A. Anikin, “Non-commutative normal forms, spectrum and inverse problems”, Asymptotic Anal., 101:4 (2017), 207–225 | DOI | MR

[6] J. Sjöstrand, “Semi-excited states in nondegenerate potential wells”, Asymptotic Anal., 6:1 (1992), 29–43 | DOI | MR

[7] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI | DOI

[8] S. Yu. Slavyanov, Asimptotika reshenii odnomernogo uravneniya Shredingera, Izd-vo LGU, L., 1990 | MR | MR

[9] S. Yu. Dobrokhotov, A. V. Tsvetkova, “O lagranzhevykh mnogoobraziyakh, svyazannykh s asimptotikoi polinomov Ermita”, Matem. zametki, 104:6 (2018), 835–850 | DOI | DOI

[10] V. F. Lazutkin, “Kvaziklassicheskaya asimptotika sobstvennykh funktsii”, Differentsialnye uravneniya s chastnymi proizvodnymi – 5, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 34, VINITI, M., 1988, 135–174 | MR | Zbl

[11] B. Helffer, D. Robert, “Puits de potentiel généralisés et asymptotique semi-classique”, Ann. Inst. H. Poincaré Phys. Théor., 41:3 (1984), 291–331 | MR | Zbl