Group algebras acting on the space of solutions of a special double
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 153-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study properties of the space $\boldsymbol{\Omega}$ of solutions of a special double confluent Heun equation closely related to the model of a overdamped Josephson junction. We describe operators acting on $\boldsymbol{\Omega}$ and relations in the algebra $\mathcal{A}$ generated by them over the real number field. The structure of $\mathcal{A}$ depends on parameters. We give conditions under which $\mathcal{A}$ is isomorphic to a group algebra and describe two corresponding group structures.
Keywords: special double confluent Heun equation, monodromy operator, solution space symmetry, group algebra.
@article{TMF_2020_204_2_a0,
     author = {V. M. Buchstaber and S. I. Tertychnyi},
     title = {Group algebras acting on the~space of solutions of a~special double},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {153--170},
     year = {2020},
     volume = {204},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a0/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - S. I. Tertychnyi
TI  - Group algebras acting on the space of solutions of a special double
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 153
EP  - 170
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a0/
LA  - ru
ID  - TMF_2020_204_2_a0
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A S. I. Tertychnyi
%T Group algebras acting on the space of solutions of a special double
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 153-170
%V 204
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a0/
%G ru
%F TMF_2020_204_2_a0
V. M. Buchstaber; S. I. Tertychnyi. Group algebras acting on the space of solutions of a special double. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 2, pp. 153-170. http://geodesic.mathdoc.fr/item/TMF_2020_204_2_a0/

[1] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002 | MR | Zbl

[2] D. Schmidt, G. Wolf, “Double confluent Heun equation”, Heun's Diffrential Equations, ed. A. Ronveaux, Oxford Univ. Press, Oxford, 1995, 129–188 | MR

[3] M. Hortaçsu, “Heun functions and some of their applications in physics”, Adv. High Energy Phys., 2018 (2018), 8621573, 14 pp., arXiv: 1101.0471 | DOI

[4] The Heun Project. Heun functions, their generalizations and applications, \par }. {\tt http://theheunproject.org/bibliography.html

[5] V. M. Bukhshtaber, S. I. Tertychnyi, “Avtomorfizmy prostranstva reshenii spetsialnykh dvazhdy konflyuentnykh uravnenii Goina”, Funkts. analiz i ego pril., 50:3 (2016), 12–33 | DOI | DOI | MR | Zbl

[6] S. I. Tertychnyi, “O monodromii prostranstva reshenii spetsialnogo dvazhdy konflyuentnogo uravneniya Goina i ee prilozheniyakh”, TMF, 201:1 (2019), 17–36 | DOI | DOI

[7] T. Panov, Ya. Veryovkin, “On the commutator subgroup of a right-angled Artin group”, J. Algebra, 521 (2019), 284–298 | DOI | MR | Zbl