@article{TMF_2020_204_1_a8,
author = {L. G. Arabadzhyan and G. L. Arabajyan},
title = {Nontrivial solvability of the~homogeneous {Wiener{\textendash}Hopf} multiple integral equation in the~conservative case and {the~Peierls} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {142--150},
year = {2020},
volume = {204},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a8/}
}
TY - JOUR AU - L. G. Arabadzhyan AU - G. L. Arabajyan TI - Nontrivial solvability of the homogeneous Wiener–Hopf multiple integral equation in the conservative case and the Peierls equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 142 EP - 150 VL - 204 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a8/ LA - ru ID - TMF_2020_204_1_a8 ER -
%0 Journal Article %A L. G. Arabadzhyan %A G. L. Arabajyan %T Nontrivial solvability of the homogeneous Wiener–Hopf multiple integral equation in the conservative case and the Peierls equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2020 %P 142-150 %V 204 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a8/ %G ru %F TMF_2020_204_1_a8
L. G. Arabadzhyan; G. L. Arabajyan. Nontrivial solvability of the homogeneous Wiener–Hopf multiple integral equation in the conservative case and the Peierls equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 142-150. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a8/
[1] E. Hopf, Mathematical Problems of Radiative Equilibrium, Cambridge Tracts in Mathematics and Mathematical Physics, 31, Stechert-Hafner, New York, 1964 | MR
[2] V. A. Ambartsumyan, Nauchnye trudy, v. 1, ed. V. V. Sobolev, Izd-vo AN ArmSSR, Erevan, 1960
[3] S. Chandrasekar, Perenos luchistoi energii, IL, M., 1953 | MR | Zbl
[4] V. V. Sobolev, Rasseyanie sveta v atmosferakh planet, Nauka, M., 1972
[5] B. Devison, Teoriya perenosa neitronov, IL, M., 1960
[6] V. S. Vladimirov, Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits, Tr. MIAN SSSR, 61, Izd-vo AN SSSR, M., 1961 | MR
[7] G. I. Marchuk, Metody rascheta yadernykh reaktorov, Atomizdat, M., 1961
[8] V. I. Gryn, “O sovmestnom opredelenii dvukh koeffitsientov trekhmernogo statsionarnogo uravneniya perenosa izlucheniya s izotropnym rasseyaniem”, Zhurn. vych. matem. i matem. fiziki, 33:1 (1993), 81–100 | MR | Zbl
[9] G. P. Klimov, Teoriya massovogo obsluzhivaniya, Iz-vo Mosk. un-ta, M., 2011
[10] L. G. Arabadzhyan, N. B. Engibaryan, “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Matem. anal., 22 (1984), 175–244 | DOI | MR | Zbl
[11] L. G. Arabadzhyan, “Odnorodnoe dvukratnoe uravnenie Vinera–Khopfa s simmetricheskim yadrom v konservativnom sluchae”, Matem. zametki, 106:1 (2019), 3–12 | DOI | DOI
[12] L. G. Arabadzhyan, N. B. Engibaryan, “O faktorizatsii kratnykh integralnykh operatorov Vinera–Khopfa”, Dokl. AN SSSR, 291:1 (1986), 11–14 | MR | Zbl
[13] L. G. Arabadzhyan, “O suschestvovanii netrivialnykh reshenii nekotorykh lineinykh i nelineinykh uravnenii tipa svertki”, Ukr. matem. zhurn., 41:12 (1989), 1587–1595 | DOI
[14] S. Lam, A. Leonard, “Milne's problem for two-dimentional transport in a quarter space”, J. Quant. Spectrosc. Radiat. Transfer, 11:6 (1971), 893–904 | DOI | MR
[15] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976 | MR