@article{TMF_2020_204_1_a7,
author = {P. M. Akhmet'ev},
title = {Magnetic helicity flux for mean magnetic field equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {130--141},
year = {2020},
volume = {204},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a7/}
}
P. M. Akhmet'ev. Magnetic helicity flux for mean magnetic field equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 130-141. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a7/
[1] H. K. Moffatt, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Univ. Press, Cambridge, 1978
[2] K.-H. Rädler, “The generation of cosmic magnetic fields”, From the Sun to the Great Attractor, Lecture Notes in Physics, 556, eds. D. Page, J. G. Hirsch, Springer, Berlin, 1999, 101–172 | DOI
[3] V. B. Semikoz, D. Sokoloff, “Magnetic helicity and cosmological magnetic field”, Astron. Astrophys., 433:3 (2005), L53–L56 | DOI
[4] U. Frish, Turbulentnost. Nasledie A. N. Kolmogorova, FAZIS, M., 1998 | MR | Zbl
[5] P. Frick, D. Sokoloff, “Cascade and dynamo action in a shell model of magnetohydrodynamic turbulence”, Phys. Rev. E, 57:4 (1998), 4155–4164 | DOI | MR
[6] V. I. Arnold, “Asimptoticheskii invariant Khopfa i ego prilozheniya”, Materialy Vsesoyuznoi shkoly po differentsialnym uravneniyam s beskonechnym chislom nezavisimykh peremennykh i po dinamicheskim sistemam s beskonechnym chislom stepenei svobody (Dilizhan, 21\;maya\;–\;3\;iyunya 1973\;g.), AN Arm. SSR, Erevan, 1974, 229–256 | Zbl
[7] P. M. Akhmetev, “Kvadratichnye spiralnosti i energiya magnitnogo polya”, Tr. MIAN, 278 (2012), 16–28 | DOI | MR
[8] D. Sokoloff, P. Akhmetyev, E. Illarionov, “Magnetic helicity and higher helicity invariants as constraints for dynamo action”, Fluid Dyn. Res., 50:1 (2018), 011407, 10 pp. | DOI | MR
[9] V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer, New York, 1998 | MR
[10] P. M. Akhmet'ev, S. Candelaresi, A. Yu. Smirnov, “Calculations for the practical applications of quadratic helicity in MHD”, Phys. Plasmas, 24:10 (2017), 102128, 9 pp., arXiv: 1710.08833 | DOI
[11] K. Subramanian, A. Brandenburg, “Magnetic helicity density and its flux in weakly inhomogeneous turbulence”, Astrophys. J. Lett., 648:1 (2006), L71–L74, arXiv: astro-ph/0509392 | DOI
[12] V. A. Gordin, V. I. Petviashvili, “Ustoichivye po Lyapunovu MGD-ravnovesiya plazmy s nenulevym davleniem”, ZhETF, 95:5 (1989), 1711–1722
[13] A. J. B. Russell, A. R. Yeates, G. Hornig, A. L. Wilmot-Smith, “Evolution of field line helicity during magnetic reconnection”, Phys. Plasmas, 22:3 (2015), 032106, 11 pp., arXiv: 1501.04856 | DOI
[14] P. M. Akhmet'ev, I. V. Vyugin, “Dispersion of the Arnold's asymptotic ergodic Hopf invariant and a formula for its calculation”, Arnold Math. J., 2020, published 18.06.2020, ; arXiv: https://doi.org/10.1007/s40598-020-00144-w1906.12131
[15] U. Frish, A. Pouqet, J. Léorat, A. Mazure, “Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence”, J. Fluid Mech., 68 (1975), 769–778 | DOI
[16] P. M. Akhmetev, O. V. Kunakovskaya, V. A. Kutvitskii, “Zamechanie o dissipatsii integrala magnitnoi spiralnosti”, TMF, 158:1 (2009), 150–160 | DOI | DOI | MR | Zbl
[17] P. R. Halmos, Lectures on Ergodic Theory, Chelsea Publ., New York, 1960 | MR
[18] A. D. Bryuno, I. V. Goryuchkina, “Neformalnye resheniya ODU”, Preprinty IPM im. M. V. Keldysha, 2009, 061, 14 pp.