@article{TMF_2020_204_1_a6,
author = {Yu. G. Ignat'ev},
title = {The~self-consistent field method and macroscopic {Einstein} equations for the~early universe},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {106--129},
year = {2020},
volume = {204},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a6/}
}
TY - JOUR AU - Yu. G. Ignat'ev TI - The self-consistent field method and macroscopic Einstein equations for the early universe JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 106 EP - 129 VL - 204 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a6/ LA - ru ID - TMF_2020_204_1_a6 ER -
Yu. G. Ignat'ev. The self-consistent field method and macroscopic Einstein equations for the early universe. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 106-129. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a6/
[1] Yu. G. Ignatev, “Makroskopicheskaya kosmologiya rannei Vselennoi”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 2015, no. 3, 16–22
[2] Yu. G. Ignat'ev, “Macroscopic Einstein equations for a cosmological model with a $\lambda$ term”, Grav. Cosmol., 22:3 (2016), 264–269, arXiv: 1509.01235 | DOI | MR
[3] Yu. G. Ignatev, “Makroskopicheskie uravneniya Einshteina i kosmologiya rannei Vselennoi. I. Matematicheskaya model dlya poperechnykh fluktuatsii”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 2016, no. 2, 47–61
[4] A. A. Vlasov, “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8:3 (1938), 291–305
[5] A. A. Vlasov, Teoriya vibratsionnykh svoistv elektronnogo gaza i ee prilozheniya, Uchenye zapiski MGU. Fizika, Vyp. 75, kn. 2, ch. 1, MGU, M., 1945; Теория многих частиц, ГИТТЛ, М.-Л., 1950 | MR
[6] A. A. Vlasov, Statisticheskie funktsii raspredeleniya, Nauka, M., 1966 | MR
[7] L. Landau, “O kolebaniyakh v elektronnoi plazme”, ZhETF, 16:7 (1946), 574–586 | MR | Zbl
[8] N. N. Bogolyubov, “Kineticheskie uravneniya”, ZhETF, 16:8 (1946), 691–702 | MR | MR | Zbl | Zbl
[9] N. N. Bogolyubov, “K teorii sverkhtekuchesti”, Izv. AN SSSR. Ser. fiz., 11:1 (1947), 77–90 | MR
[10] S. Chandrasekhar, Principles of Stellar Dynamics, Dover Publ., New York, 1942 | MR
[11] A. A. Starobinsky, “Inflaton field potential producing an exactly flat spectrum of adiabatic perturbations”, Pisma v ZhETF, 82:4 (2005), 187–191, arXiv: astro-ph/0507193 | DOI
[12] A. A. Starobinsky, “Lectures of modern problem of cosmology”, Trudy mezhdunarodnoi shkoly po gravitatsii i kosmologii “GRACOS-2014” (30 iyunya – 5 iyulya 2014, Kazan), ed. Yu. G. Ignatev, Izd-vo Kazansk. un-ta, Kazan, 2014, 48–59
[13] S. R. Green, R. M. Wald, “How well is our Universe described by an FLRW model?”, Class. Quantum Grav., 31:23 (2014), 234003, 16 pp., arXiv: 1407.8084 | DOI
[14] C. M. Ho, S. D. H. Hsu, “Instability of quantum de Sitter spacetime”, JHEP, 04 (2015), 086, 7 pp., arXiv: 1501.00708 | DOI
[15] T. Buchert, M. Carfora, G. F. R. Ellis et al., “Is there proof that backreaction of inhomogeneities is irrelevant in cosmology?”, Class. Quantum Grav., 32:21 (2015), 215021, 38 pp., arXiv: 1505.07800 | DOI
[16] S. R. Green, R. M. Wald, Comments on backreaction, arXiv: 1506.06452
[17] Yu. G. Ignat'ev, “Statistical dynamics of a classical particle ensemble in the gravitational field”, Grav. Cosmol., 13:1 (2007), 59–79, arXiv: 1012.5578 | MR
[18] Yu. G. Ignatev, Relyativistskaya kineticheskaya teoriya neravnovesnykh protsessov v gravitatsionnykh polyakh, Foliant, Kazan, 2010
[19] R. A. Isaakson, “Gravitational radiation in the limit of high frequency. I. The linear approximation and geometrical optics”, Phys. Rev., 166:5 (1968), 1263–1271 | DOI
[20] R. A. Isaakson, “Gravitational radiation in the limit of high frequency. II. Nonlinear terms and the effective stress tensor”, Phys. Rev., 166:5 (1968), 1272–1280 | DOI
[21] Yu. G. Ignatev, “O statisticheskoi dinamike ansamblya chastits v OTO”, Gravitatsiya i teoriya otnositelnosti, Vyp. 14–15, ed. V. R. Kaigorodov, Izd-vo Kazansk. un-ta, Kazan, 1978, 90–107
[22] Yu. G. Ignatev, “Statisticheskaya dinamika ansamblya klassicheskikh chastits v gravitatsionnom pole”, Gravitatsiya i teoriya otnositelnosti, Vyp. 20, ed. V. R. Kaigorodov, Izd-vo Kazansk. un-ta, Kazan, 1983, 50–109 | MR
[23] Yu. G. Ignatev, Neravnovesnaya Vselennaya: kineticheskie modeli kosmologicheskoi evolyutsii, Izd-vo Kazansk. un-ta, Kazan, 2013
[24] Yu. G. Ignatev, A. A. Popov, “Kineticheskie uravneniya dlya ultrarelyativistskikh chastits v mire Fridmana i izotropizatsiya reliktovogo izlucheniya gravitatsionnymi vzaimodeistviyami”, Problemy teorii gravitatsii, relyativistskoi kinetiki i evolyutsii Vselennoi, Izd-vo Kazansk. ped. in-ta, Kazan, 1988, 5–16
[25] Yu. G. Ignatev, A. A. Popov, “O statisticheskom opisanii ansamblya ultrarelyativistskikh chastits v prostranstvenno-ploskoi Vselennoi”, Izv. vuzov. Fizika, 1989, no. 5, 82–87 | DOI
[26] Yu. G. Ignat'ev, A. A. Popov, “Kinetic equations for ultrarelativistic particles in a Robertson–Walker universe and isotropization of relict radiation by gravitational interactions”, Astrophys. Space Sci., 163 (1990), 153–174 | DOI | MR
[27] Yu. G. Ignat'ev, “The self-consistent field method and the macroscopic universe consisting of a fluid and black holes”, Grav. Cosmol., 25:4 (2019), 354–361 | DOI | MR
[28] A. V. Zakharov, “Relyativistskoe kineticheskoe uravnenie dlya gravitatsionnogo vzaimodeistviya chastits”, ZhETF, 96:3 (1989), 769–782
[29] A. Z. Petrov, Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966
[30] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1967 | MR | Zbl
[31] E. M. Lifshits, “O gravitatsionnoi ustoichivosti izotropnogo mira”, ZhETF, 16:7 (1946), 587–602 | MR
[32] M. Bruni, S. Matarrese, S. Mollerach, S. Sonego, “Perturbations of spacetime: gauge transformations and gauge invariance at second order and beyond”, Class. Quantum Grav., 14:9 (1997), 2585–2606 | DOI | MR
[33] K. Nakamura, “Gauge invariant variables in two-parameter nonlinear perturbations”, Prog. Theor. Phys., 110:4 (2003), 723–755, arXiv: gr-qc/0303090 | DOI | MR
[34] D. Langlois, F. Vernizzi, “Evolution of nonlinear cosmological perturbations”, Phys. Rev. Lett., 95:9 (2005), 091303, 4 pp., arXiv: astro-ph/0503416 | DOI | MR
[35] K. Nakamura, “Gauge-invariant formulation of second-order cosmological perturbations”, Phys. Rev. D, 74:10 (2006), 101301, 5 pp., arXiv: gr-qc/0605107 | DOI
[36] F. Finelli, G. Marozzi, G. P. Vacca, G. Venturi, “Second-order gauge-invariant perturbations during inflation”, Phys. Rev. D, 74:8 (2006), 083522, 13 pp., arXiv: gr-qc/0604081 | DOI
[37] G. Domènech, M. Sasaki, “Hamiltonian approach to second order gauge invariant cosmological perturbations”, Phys. Rev. D, 97:2 (2018), 023521, 19 pp., arXiv: 1709.09804 | DOI | MR
[38] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. I. Qualitative analysis”, Grav. Cosmol., 25:1 (2019), 24–36 | DOI | MR
[39] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. II. Numerical analysis”, Grav. Cosmol., 25:1 (2019), 37–43 | DOI | MR