Electric field near the surface of a plasma with an arbitrary degree of degeneracy as a response to an external alternating electric field
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 76-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analytically solve a boundary value problem for the behavior (oscillation) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in a half-space with mirror boundary conditions. We apply the Vlasov–Boltzmann kinetic equation with a collision integral of the Bhatnagar–Gross–Krook type and a Poisson equation for the electric field. We obtain the electron distribution function and the electric field inside the plasma as expansions in eigensolutions of the initial equation system. We find the expansion coefficients using the boundary conditions. We analyze the behavior of the electric field near interfaces for frequencies close to the plasma oscillation frequency.
Keywords: Vlasov–Boltzmann equation, collision frequency, electric field, Drude mode, dispersion function.
Mots-clés : Debye mode, van Kampen mode
@article{TMF_2020_204_1_a4,
     author = {S. Sh. Suleimanova and A. A. Yushkanov},
     title = {Electric field near the~surface of a~plasma with an arbitrary degree of degeneracy as a~response to an~external alternating electric field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {76--94},
     year = {2020},
     volume = {204},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a4/}
}
TY  - JOUR
AU  - S. Sh. Suleimanova
AU  - A. A. Yushkanov
TI  - Electric field near the surface of a plasma with an arbitrary degree of degeneracy as a response to an external alternating electric field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 76
EP  - 94
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a4/
LA  - ru
ID  - TMF_2020_204_1_a4
ER  - 
%0 Journal Article
%A S. Sh. Suleimanova
%A A. A. Yushkanov
%T Electric field near the surface of a plasma with an arbitrary degree of degeneracy as a response to an external alternating electric field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 76-94
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a4/
%G ru
%F TMF_2020_204_1_a4
S. Sh. Suleimanova; A. A. Yushkanov. Electric field near the surface of a plasma with an arbitrary degree of degeneracy as a response to an external alternating electric field. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 76-94. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a4/

[1] O. Keller, “Local fields in the electrodynamics of mesoscopic media”, Phys. Rep., 268:2 (1996), 85–262 | DOI

[2] C. Girard, C. Joachim, S. Gauthier, “The physics of the near-field”, Rep. Prog. Phys., 63:6 (2000), 893–938 | DOI

[3] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons”, Rep. Prog. Phys., 70:1 (2007), 1–87, arXiv: cond-mat/0611257 | DOI

[4] S. I. Bozhevolnyi (ed.), Plasmonics Nanoguides and Circuits, Pan Stanford Publ., Singapore, 2008

[5] R. Chang, P. T. Leung, S. H. Lin, W. S. Tse, “Surface-enhanced Raman scattering at cryogenic substrate temperatures”, Phys. Rev. B, 62:8 (2000), 5168–5173 | DOI

[6] M. Mrejen, A. Israel, H. Taha, M. Palchan, A. Lewis, “Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays”, Opt. Exp., 15:15 (2007), 9130–9138 | DOI

[7] A. B. Shvartsburg, V. Kuzmiak, G. Petite, “Optics of subwavelength gradient nanofilms”, Phys. Rep., 452:2–3 (2007), 33–88, arXiv: 0709.2034 | DOI

[8] A. V. Latyshev, A. A. Yushkanov, “Opredelenie tolschiny nanoplenki s pomoschyu rezonansnykh chastot”, Kvantovaya elektronika, 45:3 (2015), 270–274

[9] A. V. Latyshev, A. A. Yushkanov, “Elektronnaya plazma v poluprostranstve metalla v peremennom elektricheskom pole”, Zhurn. vych. matem. i matem. fiziki, 41:8 (2001), 1239–1251 | MR | Zbl

[10] A. V. Latyshev, A. A. Yushkanov, “Vyrozhdennaya plazma v poluprostranstve vo vneshnem elektricheskom pole”, TMF, 147:3 (2006), 487–502 | DOI | DOI | MR | Zbl

[11] A. V. Latyshev, A. A. Yushkanov, “Plazma v vysokochastotnom elektricheskom pole s zerkalnym usloviem na granitse”, Izv. RAN. Ser. MZhG, 2006, no. 1, 165–177 | DOI

[12] A. V. Latyshev, A. A. Yushkanov, “Nevyrozhdennaya plazma s diffuznym granichnym usloviem na granitse v vysokochastotnom elektricheskom pole vblizi rezonansa”, Zhurn. vychisl. matem. i matem. fiziki, 47:1 (2007), 121–128 | DOI | MR | Zbl

[13] L. Tonks, I. Langmuir, “Oscillations in ionized gases”, Phys. Rev., 33:2 (1929), 195–210 | DOI

[14] A. A. Vlasov, “O vibratsionnykh svoistvakh elektronnogo gaza”, ZhETF, 8:3 (1938), 291–318 | Zbl

[15] L. D. Landau, “O kolebaniyakh elektronnoi plazmy”, Sobranie trudov, v. 2, Nauka, M., 1969, 7–25; “О колебаниях электронной плазмы”, ЖЭТФ, 16:7 (1946), 574–586

[16] N. G. Van Kampen, “Dispersionnoe uravnenie dlya voln v plazme”, Kolebaniya sverkhvysokikh chastot v plazme, eds. G. A. Bernashevskii, Z. S. Chernov, IL, M., 1961, 57–70 ; “К теории стационарных волн в плазме”, там же, 37–56 | MR

[17] E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 10, Fizicheskaya kinetika, Nauka, M., 1979 | MR | MR

[18] V. S. Vladimirov, V. V. Zharinov, Uravneniya matematicheskoi fiziki, Fizmatlit, M., 2000 | MR | MR | Zbl

[19] B. B. Kadomtsev, Kollektivnye yavleniya v plazme, Nauka, M., 1976

[20] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977 | MR | MR | Zbl

[21] N. Ashkroft, N. Mermin, Fizika tverdogo tela, Nauka, M., 1970

[22] A. V. Latyshev, S. Sh. Suleimanova, “Kraevaya zadacha Rimana v probleme o kolebaniyakh plazmy s ravnovesnym raspredeleniem Fermi–Diraka”, Vestn. MGOU. Ser. fiz.-matem., 1 (2017), 40–50 | DOI

[23] V. V. Vedenyapin, “Granichnye zadachi dlya statsionarnogo uravneniya Vlasova”, Dokl. AN SSSR, 290:4 (1986), 777–780 | MR | Zbl

[24] V. V. Vedenyapin, M. A. Negmatov, N. N. Fimin, “Uravneniya tipa Vlasova i Liuvillya, ikh mikroskopicheskie, energeticheskie i gidrodinamicheskie sledstviya”, Izv. RAN. Ser. matem., 81:3 (2017), 45–82 | DOI | MR

[25] V. V. Vedenyapin, T. S. Kazakova, V. Ya. Kiselevskaya-Babinina, B. N. Chetverushkin, “Uravnenie Shredingera kak samosoglasovannoe pole”, Dokl. RAN, 480:3 (2018), 270–272 | DOI | DOI

[26] D. Pains, Elementarnye vozbuzhdeniya v tverdykh telakh, Mir, M., 1965 | MR

[27] A. V. Latyshev, A. A. Yushkanov, “Otrazhenie plazmennoi volny ot ploskoi granitsy”, TMF, 150:3 (2007), 498–510 | DOI | DOI | MR | Zbl