Dependence of the phase of the elastic scattering amplitude on
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 70-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the extent to which the often assumed independence of the phase of the elastic scattering amplitude from momentum transfer in the domain of only small $t$ constrains the dependence of the phase on $t$ in general. Based on analyticity, we prove that if the scattering amplitude phase is independent of the transferred momentum in the domain of its small values in strong couplings, then this remains the case in the whole physical domain. Moreover, if such independence holds in any domain of physical energies including values infinitely close to the first inelastic threshold from below, then the whole scattering amplitude vanishes. We also discuss the relation between the dependence of the phase on $t$ and the size of the interaction domain.
Keywords: elastic scattering, phase, momentum transfer, analyticity.
@article{TMF_2020_204_1_a3,
     author = {V. A. Petrov},
     title = {Dependence of the~phase of the~elastic scattering amplitude on},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {70--75},
     year = {2020},
     volume = {204},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a3/}
}
TY  - JOUR
AU  - V. A. Petrov
TI  - Dependence of the phase of the elastic scattering amplitude on
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 70
EP  - 75
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a3/
LA  - ru
ID  - TMF_2020_204_1_a3
ER  - 
%0 Journal Article
%A V. A. Petrov
%T Dependence of the phase of the elastic scattering amplitude on
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 70-75
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a3/
%G ru
%F TMF_2020_204_1_a3
V. A. Petrov. Dependence of the phase of the elastic scattering amplitude on. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 70-75. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a3/

[1] R. Cahn, “Coulombic-hadronic interference in an eikonal model”, Z. Phys. C, 15 (1982), 253–260 ; V. Kundrát, M. Lokajíček, “High-energy elastic scattering amplitude of unpolarized and charged hadron”, Z. Phys. C, 63 (1994), 619–629 | DOI | DOI

[2] H. A. Bethe, “Scattering and polarization of protons by nuclei”, Ann. Phys., 3:2 (1958), 190–240 | DOI

[3] G. B. West, D. R. Yennie, “Coulomb interference in high-energy scattering”, Phys. Rev., 172:5 (1968), 1413–1422 ; R. J. Glauber, G. Matthiae, “High-energy scattering of protons by nuclei”, Nucl. Phys. B, 21:2 (1970), 135–157 ; L. Baksay, L. Baum, A. Böhm et al., “Measurements of the proton-proton total cross section and small angle elastic scattering at ISR energies”, Nucl. Phys. B, 141:1 (1978), 1–28 ; G. Antchev, P. Aspell, I. Atanassov et al. [TOTEM Collab.], “First determination of the $\rho$ parameter at $\sqrt{s} = 13$\;TeV: probing the existence of a colourless C-odd three-gluon compound state”, Eur. Phys. J. C, 79:9 (2019), 785, 26 pp. ; J. R. Cudell, O. V. Selyugin, TOTEM data and the real part of the hadron elastic amplitude at 13\;TeV, arXiv: 1901.05863 | DOI | DOI | DOI | DOI

[4] A. Martin, Scattering Theory: Unitarity, Analyticity and Crossing, Lecture Notes in Physics, 3, Springer, Berlin–New York, 1969 | DOI | MR

[5] I. I. Privalov, Vvedenie v teoriyu funktsii kompleksnogo peremennogo, GITTL, M.–L., 1948 ; А. Картан, Элементарная теория аналитических функций одного и нескольких комплексных переменных, ИЛ, М., 1963 ; Е. Титчмарш, Теория функций, Наука, М., 1980 | MR | MR | MR | Zbl | MR | MR | Zbl | Zbl

[6] J. Procházka, M. V. Lokajíček, V. Kundrát, “Dependence of elastic hadron collisions on impact parameter”, Eur. Phys. J. Plus, 131:5 (2016), 147, 19 pp. | DOI

[7] V. A. Petrov, “Sizes and distances in high energy physics”, EPJ Web Conf., 138 (2017), 02008, 8 pp. | DOI

[8] V. N. Gribov, B. L. Ioffe, I. Ya. Pomeranchuk, “Na kakikh rasstoyaniyakh proiskhodit vzaimodeistvie pri vysokikh energiyakh?”, YaF, 2 (1965), 768–776; B. L. Ioffe, “Space-time picture of photon and neutrino scattering and electroproduction cross section asymptotics”, Phys. Lett. B, 30:2 (1969), 123–125 | DOI

[9] G. A. Miller, S. J. Brodsky, The frame-independent spatial coordinate $\tilde z$: implications for light-front wave functions, deep inelastic scattering, light-front holography, and lattice QCD calculations, arXiv: 1912.08911

[10] A. Martin, “A theorem on the real part of the high-energy scattering amplitude near the forward direction”, Phys. Lett. B, 404:1 (1997), 137–140 | DOI | MR

[11] V. Kundrát, M. Lokaj{'\i}ček, “Interference between Coulomb and hadronic scattering in elastic high-energy nucleon collisions”, Phys. Lett. B, 611:1–2 (2005), 102–110, arXiv: hep-ph/0412081 | DOI