Construction of dynamical semigroups by a  functional regularization à la Kato
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 46-69
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a functional version of the Kato one-parameter regularization for constructing a dynamical semigroup generator of a relative bound-one perturbation. As an example of an application, we consider a regularization based on a boson-number cutoff.
Keywords: dynamical semigroup, Kato regularization, positivity preserving.
Mots-clés : perturbation
@article{TMF_2020_204_1_a2,
     author = {A. F. M. ter Elst and V. A. Zagrebnov},
     title = {Construction of dynamical semigroups by a~ functional regularization \`a~la {Kato}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {46--69},
     year = {2020},
     volume = {204},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a2/}
}
TY  - JOUR
AU  - A. F. M. ter Elst
AU  - V. A. Zagrebnov
TI  - Construction of dynamical semigroups by a  functional regularization à la Kato
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 46
EP  - 69
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a2/
LA  - ru
ID  - TMF_2020_204_1_a2
ER  - 
%0 Journal Article
%A A. F. M. ter Elst
%A V. A. Zagrebnov
%T Construction of dynamical semigroups by a  functional regularization à la Kato
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 46-69
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a2/
%G ru
%F TMF_2020_204_1_a2
A. F. M. ter Elst; V. A. Zagrebnov. Construction of dynamical semigroups by a  functional regularization à la Kato. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 46-69. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a2/

[1] T. Kato, “On the semi-groups generated by Kolmogoroff's differential equations”, J. Math. Soc. Japan, 6:1 (1954), 1–15 | DOI | MR

[2] E. B. Davies, Quantum theory of open systems, Academic Press, London, 1976 | MR

[3] F. Fagnola, “Algebraic probability spaces”, Proyecciones, 18:3 (1999), 1–12 | DOI | MR

[4] E. B. Davies, “Quantum dynamical semigroups and the neutron diffusion equation”, Rep. Math. Phys., 11:2 (1977), 169–188 | DOI | MR

[5] P. R. Chernoff, “Perturbations of dissipative operators with relative bound one”, Proc. Amer. Math. Soc., 33:1 (1972), 72–74 | DOI | MR

[6] N. Okazawa, “A perturbation theorem for linear contraction semigroups on reflexive Banach spaces”, Proc. Japan Acad., 47:suppl. 2 (1971), 947–949 | DOI | MR

[7] B. Demoen, P. Vanheuverzwijn, A. Verbeure, “Completely positive maps on the CCR-algebra”, Lett. Math. Phys., 2:2 (1977), 161–166 | DOI | MR

[8] A. S. Holevo, Statistical Structure of Quantum Theory, Lecture Notes in Physics Monographs, 67, Springer, Berlin, 2001 | DOI | MR

[9] S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems III. Recent Developments (Grenoble, June 16 – July 4, 2003), Lecture Notes in Mathematics, 1182, Springer, Berlin, 2006 | DOI | MR

[10] J. Banasiak, L. Arlotti, Perturbations of Positive Semigroups with Applications, Springer Monographs in Mathematics, Springer, London, 2006 | DOI | MR

[11] L. Arlotti, B. Lods, M. Mokhtar-Kharroubi, “On perturbed substochastic semigroups in abstract state spaces”, Z. Anal. Anwend., 30:4 (2011), 457–495 | DOI | MR

[12] H. Tamura, V. A. Zagrebnov, “Dynamical semigroup for unbounded repeated perturbation of an open system”, J. Math. Phys., 57:2 (2016), 023519, 13 pp. | DOI | MR

[13] E. B. Davies, One-Parameter Semigroups, London Mathematical Society Monographs, 15, Academic Press, London–New York, 1980 | MR

[14] H. Tamura, V. A. Zagrebnov, “Dynamics of an open system for repeated harmonic perturbation”, J. Stat. Phys., 163:4 (2016), 844–867 | DOI | MR

[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR