Keywords: bi-Hamiltonian structure, two-component Camassa–Holm system, two-component Novikov system, two-component dual dispersive water wave system.
@article{TMF_2020_204_1_a1,
author = {Jing Kang and X. Liu and P. J. Olver and C. Qu},
title = {Liouville correspondences between multicomponent integrable hierarchies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {10--45},
year = {2020},
volume = {204},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a1/}
}
TY - JOUR AU - Jing Kang AU - X. Liu AU - P. J. Olver AU - C. Qu TI - Liouville correspondences between multicomponent integrable hierarchies JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 10 EP - 45 VL - 204 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a1/ LA - ru ID - TMF_2020_204_1_a1 ER -
Jing Kang; X. Liu; P. J. Olver; C. Qu. Liouville correspondences between multicomponent integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 10-45. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a1/
[1] J. Kang, X. Liu, P. J. Olver, C. Qu, “Liouville correspondence between the modified KdV hierarchy and its dual integrable hierarchy”, J. Nonlinear Sci., 26:1 (2016), 141–170 | DOI | MR
[2] J. Kang, X. Liu, P. J. Olver, C. Qu, “Liouville correspondences between integrable hierarchies”, SIGMA, 13 (2017), 035, 26 pp. | MR
[3] J. Lenells, “The correspondence between KdV and Camassa–Holm”, Internat. Math. Res. Not., 2004:71 (2004), 3797–3811 | DOI | MR
[4] H. P. McKean, “The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies”, Commun. Pure Appl. Math., 56:7 (2003), 998–1015 | DOI | MR
[5] D. Chen, Y. Li, Y. Zeng, “Transformation operator between recursion operators of Bäcklund transformations. I”, Sci. Sinica Ser. A, 28:9 (1985), 907–922 | MR
[6] P. A. Clarkson, A. S. Fokas, M. J. Ablowitz, “Hodograph transformations of linearizable partial differential equations”, SIAM J. Appl. Math., 49:4 (1989), 1188–1209 | DOI | MR
[7] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR
[8] B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR
[9] R. M. Miura, “Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation”, J. Math. Phys., 9:8 (1968), 1202–1204 | DOI | MR
[10] C. Rogers, W. K. Schief, Bäcklund and Darboux transformations. Geoemtry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, 30, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR
[11] M. Wadati, K. Sogo, “Gauge transformations in soliton theory”, J. Phys. Soc. Japan, 53:2 (1983), 394–398 | DOI | MR
[12] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR
[13] R. Milson, “Liouville transformation and exactly solvable Schrödinger equations”, Internat. J. Theor. Phys., 37:6 (1998), 1735–1752 | DOI | MR
[14] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974 | MR
[15] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR
[16] R. Camassa, D. D. Holm, J. Hyman, “A new integrable shallow water equation”, Advances in Applied Mechanics, v. 31, eds. J. W. Hutchinson, T. Y. Wu, Academic Press, Boston, MA, 1994, 1–33 | DOI | Zbl
[17] A. Constantin, D. Lannes, “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations”, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 | DOI | MR
[18] B. Fuchssteiner, A. S. Fokas, “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR
[19] J. Lenells, “Traveling wave solutions of the Camassa–Holm and Korteweg–de Vries equations”, J. Nonlinear Math. Phys., 11:4 (2004), 508–520 | DOI | MR
[20] P. J. Olver, P. Rosenau, “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR
[21] R. M. Chen, Y. Liu, C. Qu, S. Zhang, “Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion”, Adv. Math., 272 (2015), 225–251 | DOI | MR
[22] G. Gui, Y. Liu, P. J. Olver, C. Qu, “Wave breaking and peakons for a modified Camassa–Holm equation”, Commun. Math. Phys., 319:3 (2013), 731–759 | DOI | MR
[23] X. Liu, Y. Liu, C. Qu, “Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation”, Adv. Math., 255 (2014), 1–37 | DOI | MR
[24] Y. Liu, P. J. Olver, C. Qu, S. Zhang, “On the blow-up of solutions to the integrable modified Camassa–Holm equation”, Anal. Appl., 12:4 (2014), 355–368 | DOI | MR
[25] Y. Matsuno, “Bäcklund transformation and smooth multisoliton solutions for a modified Camassa–Holm equation with cubic nonlinearity”, J. Math. Phys., 54:5 (2013), 051504, 14 pp., arXiv: 1302.0107 | DOI | MR
[26] A. S. Fokas, P. J. Olver, P. Rosenau, “A plethora of integrable bi-Hamiltonian equations”, Algebraic Aspects of Integrable Systems, Progress in Nonlinear Differential Equations and Their Applications, 26, eds. A. S. Fokas, I. M. Gelfand, Birkhäuser, Boston, MA, 1997, 93–101 | DOI | MR
[27] B. Fuchssteiner, “Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa–Holm equation”, Phys. D, 95:3–4 (1996), 229–243 | DOI | MR
[28] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley and Sons, New York, 1993 | MR
[29] A. Degasperis, D. D. Kholm, A. Khon, “Novoe integriruemoe uravnenie s pikonnymi resheniyami”, TMF, 133:2 (2002), 170–183 | DOI | DOI | MR
[30] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, Italy, December 16–22, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | MR | Zbl
[31] A. N. W. Hone, J. P. Wang, “Integrable peakon equations with cubic nonlinearity”, J. Phys. A: Math. Theor., 41:37 (2008), 372002, 10 pp. | DOI | MR
[32] V. Novikov, “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:34 (2009), 342002, 14 pp. | DOI | MR
[33] P. J. Caudrey, R. K. Dodd, J. D. Gibbon, “A new hierarchy of Korteweg–de Vries equations”, Proc. Roy. Soc. London Ser. A, 351:1666 (1976), 407–422 | DOI | MR
[34] K. Sawada, T. Kotera, “A method for finding $N$-soliton solutions of the K.d.V. equation and K.d.V.-like equation”, Prog. Theor. Phys., 51:5 (1974), 1355–1367 | DOI | MR
[35] B. Fuchssteiner, W. Oevel, “The bi-Hamiltonian structure of some nonlinear fifth- and seventh-order differential equations and recursion formulas for their symmetries and conserved covariants”, J. Math. Phys., 23:3 (1982), 358–363 | DOI | MR
[36] A. N. W. Hone, J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR
[37] B. A. Kupershmidt, “A super Korteweg–de Vries equation: An integrable system”, Phys. Lett. A, 102:5–6 (1984), 213–215 | DOI | MR
[38] M. Chen, S.-Q. Liu, Y. Zhang, “A two-component generalization of the Camassa–Holm equation and its solutions”, Lett. Math. Phys., 75:1 (2006), 1–15 | DOI | MR
[39] A. Constantin, R. I. Ivanov, “On an integrable two-component Camassa–Holm shallow water system”, Phys. Lett. A, 372:48 (2008), 7129–7132, arXiv: 0806.0868 | DOI | MR
[40] J. Eckhardt, F. Gesztesy, H. Holden, A. Kostenko, G. Teschl, “Real-valued algebro-geometric solutions of the two-component Camassa–Holm hierarchy”, Ann. Inst. Fourier, 67:3 (2017), 1185–1230 | DOI | MR
[41] J. Eckhardt, K. Grunert, “A Lagrangian view on complete integrability of the two-component Camassa–Holm system”, J. Integrable Syst., 2:1 (2017), xyx002, 14 pp. | DOI | MR
[42] J. Escher, J. Kohlmann, J. Lenells, “The geometry of the two-component Camassa–Holm and Degasperis–Procesi equations”, J. Geom. Phys., 61:2 (2011), 436–452, arXiv: 1009.0188 | DOI | MR
[43] P. Guha, P. J. Olver, “Geodesic flow and two(super)component analog of the Camassa–Holm equation”, SIGMA, 2 (2006), 054, 9 pp., arXiv: nlin.SI/0605041 | DOI | MR | Zbl
[44] G. Gui, Y. Liu, “On the global existence and wave breaking criteria for the two-component Camassa–Holm system”, J. Funct. Anal., 258:12 (2010), 4251–4278 | DOI | MR
[45] D. D. Holm, R. I. Ivanov, “Two-component CH system: inverse scattering, peakons and geometry”, Inverse Problems, 27:4 (2011), 045013, 19 pp., arXiv: 1009.5374 | DOI | MR
[46] A. N. W. Hone, V. Novikov, J. P. Wang, “Two-component generalizations of the Camassa–Holm equation”, Nonlinearity, 30:2 (2017), 622–658, arXiv: 1602.03431 | DOI | MR
[47] Y. Matsuno, “Multisoliton solutions of the two-component Camassa–Holm system and their reductions”, J. Phys. A: Math. Theor., 50:34 (2017), 345202, 28 pp. | DOI | MR
[48] C. Qu, J. Song, R. Yao, “Multi-component integrable systems with peaked solitons and invariant curve flows in certain geometries”, SIGMA, 9 (2013), 001, 19 pp. | DOI | MR
[49] I. A. B. Strachan, B. M. Szablikowski, “Novikov algebras and a classification of multicomponent Camassa–Holm equations”, Stud. Appl. Math., 133:1 (2014), 84–117 | DOI | MR
[50] B. Xia, Z. Qiao, R. Zhou, “A synthetical two-component model with peakon solutions”, Stud. Appl. Math., 135:3 (2015), 248–276 | DOI | MR
[51] M. Antonowicz, A. P. Fordy, “Coupled Harry Dym equations with multi-Hamiltonian structures”, J. Phys. A: Math. Gen., 21:5 (1988), 269–275 | DOI | MR
[52] M. Antonowicz, A. P. Fordy, “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28:3 (1987), 345–357 | DOI | MR
[53] M. Antonowicz, A. P. Fordy, “Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems”, Commun. Math. Phys., 124:3 (1989), 465–486 | DOI | MR
[54] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR
[55] M. Ito, “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91:7 (1982), 335–338 | DOI | MR
[56] R. I. Ivanov, T. Lyons, “Integrable models for shallow water with energy dependent spectral problems”, J. Nonlinear Math. Phys., 19:supp. 1 (2012), 72–88 | DOI | MR
[57] D. J. Kaup, “A higher-order water-wave equation and the method for solving it”, Progr. Theoret. Phys., 54:2 (1975), 396–408 | DOI | MR
[58] X. Geng, B. Xue, “An extension of integrable peakon equations with cubic nonlinearity”, Nonlinearity, 22:8 (2009), 1847–1856 | DOI | MR
[59] H. Lundmark, J. Szmigielski, An Inverse Spectral Problem Related to the Geng–Xue Two-Component Peakon Equation, Memoirs of the American Mathematical Society, 244, no. 1155, AMS, Providence, 2016 | DOI | MR
[60] H. Li, W. Chai, “A new Liouville transformation for the Geng–Xue system”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 93–101 | DOI | MR
[61] N. Li, Q. P. Liu, “On bi-Hamiltonian structure of two-component Novikov equation”, Phys. Lett. A, 377:3–4 (2013), 257–261 | DOI | MR
[62] N. Li, X. Niu, “A reciprocal transformation for the Geng–Xue equation”, J. Math. Phys., 55:5 (2014), 053505, 7 pp. | DOI | MR
[63] H. Lundmark, J. Szmigielski, “Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation”, J. Integrable Syst., 2:1 (2017), xyw014, 65 pp. | DOI | MR
[64] J. Kang, X. Liu, P. J. Olver, C. Qu, “Bäcklund transformations for tri-Hamiltonian dual structures of multi-component integrable system”, J. Integrable Syst., 2:1 (2017), xyw016, 43 pp. | DOI | MR
[65] B. A. Kupershmidt, “Mathematics of dispersive water waves”, Commun. Math. Phys., 99:1 (1985), 51–73 | DOI | MR
[66] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR
[67] P. J. Olver, “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR
[68] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR
[69] P. J. Olver, “Darboux' theorem for Hamiltonian differential operators”, J. Differ. Equ., 71:1 (1988), 10–33 | DOI | MR
[70] L. J. F. Broer, “Approximate equations for long water waves”, Appl. Sci. Res., 31:5 (1975), 377–395 | DOI | MR
[71] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | DOI | MR | Zbl