Liouville correspondences between multicomponent integrable hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 10-45
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish Liouville correspondences for the integrable two-component Camassa–Holm hierarchy, the two-component Novikov $($Geng–Xue$)$ hierarchy, and the two-component dual dispersive water wave hierarchy using the related Liouville transformations. This extends previous results for scalar Camassa–Holm and KdV hierarchies and Novikov and Sawada–Kotera hierarchies to the multicomponent case.
Mots-clés : Liouville transformation
Keywords: bi-Hamiltonian structure, two-component Camassa–Holm system, two-component Novikov system, two-component dual dispersive water wave system.
@article{TMF_2020_204_1_a1,
     author = {Jing Kang and X. Liu and P. J. Olver and C. Qu},
     title = {Liouville correspondences between multicomponent integrable hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {10--45},
     year = {2020},
     volume = {204},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a1/}
}
TY  - JOUR
AU  - Jing Kang
AU  - X. Liu
AU  - P. J. Olver
AU  - C. Qu
TI  - Liouville correspondences between multicomponent integrable hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 10
EP  - 45
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a1/
LA  - ru
ID  - TMF_2020_204_1_a1
ER  - 
%0 Journal Article
%A Jing Kang
%A X. Liu
%A P. J. Olver
%A C. Qu
%T Liouville correspondences between multicomponent integrable hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 10-45
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a1/
%G ru
%F TMF_2020_204_1_a1
Jing Kang; X. Liu; P. J. Olver; C. Qu. Liouville correspondences between multicomponent integrable hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 10-45. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a1/

[1] J. Kang, X. Liu, P. J. Olver, C. Qu, “Liouville correspondence between the modified KdV hierarchy and its dual integrable hierarchy”, J. Nonlinear Sci., 26:1 (2016), 141–170 | DOI | MR

[2] J. Kang, X. Liu, P. J. Olver, C. Qu, “Liouville correspondences between integrable hierarchies”, SIGMA, 13 (2017), 035, 26 pp. | MR

[3] J. Lenells, “The correspondence between KdV and Camassa–Holm”, Internat. Math. Res. Not., 2004:71 (2004), 3797–3811 | DOI | MR

[4] H. P. McKean, “The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies”, Commun. Pure Appl. Math., 56:7 (2003), 998–1015 | DOI | MR

[5] D. Chen, Y. Li, Y. Zeng, “Transformation operator between recursion operators of Bäcklund transformations. I”, Sci. Sinica Ser. A, 28:9 (1985), 907–922 | MR

[6] P. A. Clarkson, A. S. Fokas, M. J. Ablowitz, “Hodograph transformations of linearizable partial differential equations”, SIAM J. Appl. Math., 49:4 (1989), 1188–1209 | DOI | MR

[7] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR

[8] B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR

[9] R. M. Miura, “Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation”, J. Math. Phys., 9:8 (1968), 1202–1204 | DOI | MR

[10] C. Rogers, W. K. Schief, Bäcklund and Darboux transformations. Geoemtry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, 30, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR

[11] M. Wadati, K. Sogo, “Gauge transformations in soliton theory”, J. Phys. Soc. Japan, 53:2 (1983), 394–398 | DOI | MR

[12] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR

[13] R. Milson, “Liouville transformation and exactly solvable Schrödinger equations”, Internat. J. Theor. Phys., 37:6 (1998), 1735–1752 | DOI | MR

[14] F. W. J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974 | MR

[15] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR

[16] R. Camassa, D. D. Holm, J. Hyman, “A new integrable shallow water equation”, Advances in Applied Mechanics, v. 31, eds. J. W. Hutchinson, T. Y. Wu, Academic Press, Boston, MA, 1994, 1–33 | DOI | Zbl

[17] A. Constantin, D. Lannes, “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations”, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 | DOI | MR

[18] B. Fuchssteiner, A. S. Fokas, “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR

[19] J. Lenells, “Traveling wave solutions of the Camassa–Holm and Korteweg–de Vries equations”, J. Nonlinear Math. Phys., 11:4 (2004), 508–520 | DOI | MR

[20] P. J. Olver, P. Rosenau, “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR

[21] R. M. Chen, Y. Liu, C. Qu, S. Zhang, “Oscillation-induced blow-up to the modified Camassa–Holm equation with linear dispersion”, Adv. Math., 272 (2015), 225–251 | DOI | MR

[22] G. Gui, Y. Liu, P. J. Olver, C. Qu, “Wave breaking and peakons for a modified Camassa–Holm equation”, Commun. Math. Phys., 319:3 (2013), 731–759 | DOI | MR

[23] X. Liu, Y. Liu, C. Qu, “Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation”, Adv. Math., 255 (2014), 1–37 | DOI | MR

[24] Y. Liu, P. J. Olver, C. Qu, S. Zhang, “On the blow-up of solutions to the integrable modified Camassa–Holm equation”, Anal. Appl., 12:4 (2014), 355–368 | DOI | MR

[25] Y. Matsuno, “Bäcklund transformation and smooth multisoliton solutions for a modified Camassa–Holm equation with cubic nonlinearity”, J. Math. Phys., 54:5 (2013), 051504, 14 pp., arXiv: 1302.0107 | DOI | MR

[26] A. S. Fokas, P. J. Olver, P. Rosenau, “A plethora of integrable bi-Hamiltonian equations”, Algebraic Aspects of Integrable Systems, Progress in Nonlinear Differential Equations and Their Applications, 26, eds. A. S. Fokas, I. M. Gelfand, Birkhäuser, Boston, MA, 1997, 93–101 | DOI | MR

[27] B. Fuchssteiner, “Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa–Holm equation”, Phys. D, 95:3–4 (1996), 229–243 | DOI | MR

[28] I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, John Wiley and Sons, New York, 1993 | MR

[29] A. Degasperis, D. D. Kholm, A. Khon, “Novoe integriruemoe uravnenie s pikonnymi resheniyami”, TMF, 133:2 (2002), 170–183 | DOI | DOI | MR

[30] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, Italy, December 16–22, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | MR | Zbl

[31] A. N. W. Hone, J. P. Wang, “Integrable peakon equations with cubic nonlinearity”, J. Phys. A: Math. Theor., 41:37 (2008), 372002, 10 pp. | DOI | MR

[32] V. Novikov, “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:34 (2009), 342002, 14 pp. | DOI | MR

[33] P. J. Caudrey, R. K. Dodd, J. D. Gibbon, “A new hierarchy of Korteweg–de Vries equations”, Proc. Roy. Soc. London Ser. A, 351:1666 (1976), 407–422 | DOI | MR

[34] K. Sawada, T. Kotera, “A method for finding $N$-soliton solutions of the K.d.V. equation and K.d.V.-like equation”, Prog. Theor. Phys., 51:5 (1974), 1355–1367 | DOI | MR

[35] B. Fuchssteiner, W. Oevel, “The bi-Hamiltonian structure of some nonlinear fifth- and seventh-order differential equations and recursion formulas for their symmetries and conserved covariants”, J. Math. Phys., 23:3 (1982), 358–363 | DOI | MR

[36] A. N. W. Hone, J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR

[37] B. A. Kupershmidt, “A super Korteweg–de Vries equation: An integrable system”, Phys. Lett. A, 102:5–6 (1984), 213–215 | DOI | MR

[38] M. Chen, S.-Q. Liu, Y. Zhang, “A two-component generalization of the Camassa–Holm equation and its solutions”, Lett. Math. Phys., 75:1 (2006), 1–15 | DOI | MR

[39] A. Constantin, R. I. Ivanov, “On an integrable two-component Camassa–Holm shallow water system”, Phys. Lett. A, 372:48 (2008), 7129–7132, arXiv: 0806.0868 | DOI | MR

[40] J. Eckhardt, F. Gesztesy, H. Holden, A. Kostenko, G. Teschl, “Real-valued algebro-geometric solutions of the two-component Camassa–Holm hierarchy”, Ann. Inst. Fourier, 67:3 (2017), 1185–1230 | DOI | MR

[41] J. Eckhardt, K. Grunert, “A Lagrangian view on complete integrability of the two-component Camassa–Holm system”, J. Integrable Syst., 2:1 (2017), xyx002, 14 pp. | DOI | MR

[42] J. Escher, J. Kohlmann, J. Lenells, “The geometry of the two-component Camassa–Holm and Degasperis–Procesi equations”, J. Geom. Phys., 61:2 (2011), 436–452, arXiv: 1009.0188 | DOI | MR

[43] P. Guha, P. J. Olver, “Geodesic flow and two(super)component analog of the Camassa–Holm equation”, SIGMA, 2 (2006), 054, 9 pp., arXiv: nlin.SI/0605041 | DOI | MR | Zbl

[44] G. Gui, Y. Liu, “On the global existence and wave breaking criteria for the two-component Camassa–Holm system”, J. Funct. Anal., 258:12 (2010), 4251–4278 | DOI | MR

[45] D. D. Holm, R. I. Ivanov, “Two-component CH system: inverse scattering, peakons and geometry”, Inverse Problems, 27:4 (2011), 045013, 19 pp., arXiv: 1009.5374 | DOI | MR

[46] A. N. W. Hone, V. Novikov, J. P. Wang, “Two-component generalizations of the Camassa–Holm equation”, Nonlinearity, 30:2 (2017), 622–658, arXiv: 1602.03431 | DOI | MR

[47] Y. Matsuno, “Multisoliton solutions of the two-component Camassa–Holm system and their reductions”, J. Phys. A: Math. Theor., 50:34 (2017), 345202, 28 pp. | DOI | MR

[48] C. Qu, J. Song, R. Yao, “Multi-component integrable systems with peaked solitons and invariant curve flows in certain geometries”, SIGMA, 9 (2013), 001, 19 pp. | DOI | MR

[49] I. A. B. Strachan, B. M. Szablikowski, “Novikov algebras and a classification of multicomponent Camassa–Holm equations”, Stud. Appl. Math., 133:1 (2014), 84–117 | DOI | MR

[50] B. Xia, Z. Qiao, R. Zhou, “A synthetical two-component model with peakon solutions”, Stud. Appl. Math., 135:3 (2015), 248–276 | DOI | MR

[51] M. Antonowicz, A. P. Fordy, “Coupled Harry Dym equations with multi-Hamiltonian structures”, J. Phys. A: Math. Gen., 21:5 (1988), 269–275 | DOI | MR

[52] M. Antonowicz, A. P. Fordy, “Coupled KdV equations with multi-Hamiltonian structures”, Phys. D, 28:3 (1987), 345–357 | DOI | MR

[53] M. Antonowicz, A. P. Fordy, “Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems”, Commun. Math. Phys., 124:3 (1989), 465–486 | DOI | MR

[54] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR

[55] M. Ito, “Symmetries and conservation laws of a coupled nonlinear wave equation”, Phys. Lett. A, 91:7 (1982), 335–338 | DOI | MR

[56] R. I. Ivanov, T. Lyons, “Integrable models for shallow water with energy dependent spectral problems”, J. Nonlinear Math. Phys., 19:supp. 1 (2012), 72–88 | DOI | MR

[57] D. J. Kaup, “A higher-order water-wave equation and the method for solving it”, Progr. Theoret. Phys., 54:2 (1975), 396–408 | DOI | MR

[58] X. Geng, B. Xue, “An extension of integrable peakon equations with cubic nonlinearity”, Nonlinearity, 22:8 (2009), 1847–1856 | DOI | MR

[59] H. Lundmark, J. Szmigielski, An Inverse Spectral Problem Related to the Geng–Xue Two-Component Peakon Equation, Memoirs of the American Mathematical Society, 244, no. 1155, AMS, Providence, 2016 | DOI | MR

[60] H. Li, W. Chai, “A new Liouville transformation for the Geng–Xue system”, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 93–101 | DOI | MR

[61] N. Li, Q. P. Liu, “On bi-Hamiltonian structure of two-component Novikov equation”, Phys. Lett. A, 377:3–4 (2013), 257–261 | DOI | MR

[62] N. Li, X. Niu, “A reciprocal transformation for the Geng–Xue equation”, J. Math. Phys., 55:5 (2014), 053505, 7 pp. | DOI | MR

[63] H. Lundmark, J. Szmigielski, “Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation”, J. Integrable Syst., 2:1 (2017), xyw014, 65 pp. | DOI | MR

[64] J. Kang, X. Liu, P. J. Olver, C. Qu, “Bäcklund transformations for tri-Hamiltonian dual structures of multi-component integrable system”, J. Integrable Syst., 2:1 (2017), xyw016, 43 pp. | DOI | MR

[65] B. A. Kupershmidt, “Mathematics of dispersive water waves”, Commun. Math. Phys., 99:1 (1985), 51–73 | DOI | MR

[66] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR

[67] P. J. Olver, “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR

[68] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR

[69] P. J. Olver, “Darboux' theorem for Hamiltonian differential operators”, J. Differ. Equ., 71:1 (1988), 10–33 | DOI | MR

[70] L. J. F. Broer, “Approximate equations for long water waves”, Appl. Sci. Res., 31:5 (1975), 377–395 | DOI | MR

[71] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977 | DOI | MR | Zbl