Chebyshev polynomials, Catalan numbers, and tridiagonal matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish a relation between linear second-order difference equations corresponding to Chebyshev polynomials and Catalan numbers. The latter are the limit coefficients of a converging series of rational functions corresponding to the Riccati equation. As the main application, we show a relation between the polynomials $\varphi_n(\mu)$ that are solutions of the problem of commutation of a tridiagonal matrix with the simplest Vandermonde matrix and Chebyshev polynomials.
Keywords: Chebyshev polynomial
Mots-clés : tridiagonal matrix.
@article{TMF_2020_204_1_a0,
     author = {A. E. Artisevich and B. S. Bychkov and A. B. Shabat},
     title = {Chebyshev polynomials, {Catalan} numbers, and tridiagonal matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--9},
     year = {2020},
     volume = {204},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a0/}
}
TY  - JOUR
AU  - A. E. Artisevich
AU  - B. S. Bychkov
AU  - A. B. Shabat
TI  - Chebyshev polynomials, Catalan numbers, and tridiagonal matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 3
EP  - 9
VL  - 204
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a0/
LA  - ru
ID  - TMF_2020_204_1_a0
ER  - 
%0 Journal Article
%A A. E. Artisevich
%A B. S. Bychkov
%A A. B. Shabat
%T Chebyshev polynomials, Catalan numbers, and tridiagonal matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 3-9
%V 204
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a0/
%G ru
%F TMF_2020_204_1_a0
A. E. Artisevich; B. S. Bychkov; A. B. Shabat. Chebyshev polynomials, Catalan numbers, and tridiagonal matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 204 (2020) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/TMF_2020_204_1_a0/

[1] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, CRC Press, Boca Raton, FL, 2003 | MR

[2] A. Grünbaum, “The eigenvectors of the discrete Fourier transform: a version of the Hermite functions”, J. Math. Anal. Appl., 88:2 (1982), 355–363 | DOI | MR

[3] A. P. Veselov, “Tsepochka Tody i lineinaya algebra”, Geometricheskie metody v matematicheskoi fizike, Lektsii letnei shkoly (Voskresenskoe, 27.06.2011 – 1.07.2011), ed. B. A. Dubrovin, Laboratoriya geometricheskikh metodov matematicheskoi fiziki im. N. N. Bogolyubova, M., 2012, 5–30

[4] V. N. Malozemov, S. M. Masharskii, Osnovy diskretnogo garmonicheskogo analiza, Lan, SPb., 2012

[5] D. E. Burlankov, M. I. Kuznetsov, A. Yu. Chirkov, V. A. Yakovlev, Kompyuternaya algebra, Elektronnyi uchebnik, Izd-vo Nizhegorod. gos. un-ta, N. Novgorod, 2002

[6] A. E. Artisevich, A. B. Shabat, “Tri teoremy o matritsakh Vandermonda”, Vladikavk. matem. zhurn., 22:1 (2020), 5–22 | DOI