Quantization of some generalized Jaynes–Cummings models in a Kerr-like medium
Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 451-466 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on fundamental principles of quantum mechanics, we present a method for a rigorous analytic construction of the spectra of the one- and two-photon Jaynes–Cummings models in a Kerr medium. To obtain an idea of the method, we consider a first generalized Jaynes–Cummings model with a real, linear superpotential using techniques of supersymmetric quantum mechanics. The Hamiltonian of this model is written as a combination of operators generating the underlying superalgebra whose elements are defined as differential matrix operators. Based on the formalism of supersymmetric quantum mechanics and the properties of sets of common observables, we derive solutions of the one- and two-photon models expressed in terms of confluent hypergeometric functions. Finally, using numerical analysis, we study the influence of the Kerr effect on the energy spectra of the physical system.
Keywords: quantum mechanics, Jaynes–Cummings Hamiltonian, commuting operator, confluent hypergeometric function.
Mots-clés : constant of motion
@article{TMF_2020_203_3_a7,
     author = {A. J. Adanmitonde and G. Y. H. Avossevou and F. A. Dossa},
     title = {Quantization of some generalized {Jaynes{\textendash}Cummings} models in {a~Kerr-like} medium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {451--466},
     year = {2020},
     volume = {203},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a7/}
}
TY  - JOUR
AU  - A. J. Adanmitonde
AU  - G. Y. H. Avossevou
AU  - F. A. Dossa
TI  - Quantization of some generalized Jaynes–Cummings models in a Kerr-like medium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 451
EP  - 466
VL  - 203
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a7/
LA  - ru
ID  - TMF_2020_203_3_a7
ER  - 
%0 Journal Article
%A A. J. Adanmitonde
%A G. Y. H. Avossevou
%A F. A. Dossa
%T Quantization of some generalized Jaynes–Cummings models in a Kerr-like medium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 451-466
%V 203
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a7/
%G ru
%F TMF_2020_203_3_a7
A. J. Adanmitonde; G. Y. H. Avossevou; F. A. Dossa. Quantization of some generalized Jaynes–Cummings models in a Kerr-like medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 203 (2020) no. 3, pp. 451-466. http://geodesic.mathdoc.fr/item/TMF_2020_203_3_a7/

[1] E. T. Jaynes, F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proc. IEEE, 51:1 (1963), 89–109 ; P. Meystre, E. Geneux, A. Quattropani, A. Faist, “Long-time behaviour of a two-level system in interaction with an electromagnetic field”, Nuovo Cimento B, 25:2 (1975), 521–537 | DOI | DOI

[2] R. H. Dicke, “Coherence in spontaneous radiation processes”, Phys. Rev., 93:1 (1954), 99–110 | DOI

[3] J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, E. Solano, “Deep strong coupling regime of the Jaynes–Cummings model”, Phys. Rev. Lett., 105:26 (2010), 263603, 4 pp., arXiv: 1008.1240 | DOI

[4] A. Crespi, S. Longhi, R. Osellame, “Photonic realization of the quantum Rabi model”, Phys. Rev. Lett., 108:16 (2012), 163601, 5 pp., arXiv: 1111.6424 | DOI

[5] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, J. Vucković, “Controlling cavity reflectivity with a single quantum dot”, Nature, 450:7171 (2007), 857–861 | DOI

[6] P. Forn-Dáz, J. Lisenfeld, D. Marcos, J. J. Garcia-Ripoll, E. Solano, C. J. P. M. Harmans, J. E. Mooij, “Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime”, Phys. Rev. Lett., 105:23 (2010), 237001, 4 pp., arXiv: 1005.1559 | DOI

[7] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime”, Nature Phys., 6 (2010), 772–776 | DOI

[8] Ts. Gantsog, A. Joshi, R. Tanas, “Phase properties of one- and two-photon Jaynes–Cummings models with a Kerr medium”, Quantum Semiclass. Opt., 8:3 (1996), 445–456 | DOI

[9] Zh. V. Ungvu, F. A. Dosa, G. I. Avosvu, “Biortogonalnaya kvantovaya mekhanika dlya neermitovykh mnogomodovoi i mnogofotonnoi modelei Dzheinsa–Kammingsa”, TMF, 193:1 (2017), 66–83 | DOI | DOI | MR

[10] I. Travĕnec, “Solvability of the two-photon Rabi Hamiltonian”, Phys. Rev. A, 85:4 (2012), 043805, 6 pp., arXiv: 1201.3717 | DOI

[11] B. Gardas, J. Dajka, “Generalized parity in multi-photon Rabi model”, Phys. Lett. A, 377:44 (2013), 3205–3208, arXiv: 1301.3747 | DOI | MR

[12] B. F. Samsonov, J. Negro, “Darboux transformations of the Jaynes–Cummings Hamiltonian”, J. Phys. A: Math. Gen., 37:43 (2004), 10115–10127, arXiv: quant-ph/0401092 | DOI | MR

[13] R. Dutt, A. Khare, U. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials”, Amer. J. Phys., 56:2 (1988), 163–168 | DOI

[14] F. Cooper, A. Khare, U. Sukhateme, “Supersymmetry and quantum mechanics”, Phys. Rep., 251:5–6 (1995), 267–385, arXiv: hep-th/9405029 | DOI | MR

[15] I. Aref'eva, D. J. Fernández, V. Hussin, J. Negro, L. M. Nieto, B. F. Samsonov, “Progress in supersymmetric quantum mechanics”, J. Phys. A: Math. Gen., 37:43 (2004), 10007–10458 | DOI

[16] A. A. Andrianov, M. V. Ioffe, “Nonlinear supersymmetric quantum mechanics: concepts and realizations”, J. Phys. A: Math. Gen., 45:50 (2012), 503001, 62 pp., arXiv: 1207.6799 | DOI | MR

[17] H.-X. Lu, X.-Q. Wang, “Multiphoton Jaynes–Cummings model solved via supersymmetric unitary transformation”, Chinese Phys., 9:8 (2000), 1009–1963 | DOI

[18] B. M. Rodríguez-Lara, H. M. Moya-Cessa, “The exact solution of generalized Dicke models via Susskind–Glogower operators”, J. Phys. A: Math. Theor., 46:9 (2013), 095301, 10 pp., arXiv: 1207.6551 | DOI | MR

[19] A. D. Alhaidari, “The supersymmetric Jaynes–Cummings model and its solutions”, J. Phys. A: Math. Gen., 39:50 (2006), 15391–15401 | DOI | MR

[20] C. Buzano, M. G. Rasetti, M. L. Rastello, “Dynamical superalgebra of the “dressed” Jaynes–Cummings model”, Phys. Rev. Lett., 62:2 (1989), 137–139 ; M. Chaichian, D. Ellinas, P. Kulish, “Quantum algebra as the dynamical symmetry of the deformed Jaynes–Cummings model”, Phys. Rev. Lett., 65:8 (1990), 980–983 | DOI | MR | DOI | MR

[21] A. Maggitti, M. Radonjić, B. M. Jelenković, “Dark-polariton bound pairs in the modified Jaynes–Cummings–Hubbard model”, Phys. Rev. A, 93:1 (2016), 013835, 10 pp. | DOI

[22] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[23] E. Choreño, D. Ojeda-Guillén, V. D. Granados, “Matrix diagonalization and exact solution of $k$-photon Jaynes–Cummings model”, Eur. Phys. J. D, 72:8 (2018), 142, 7 pp., arXiv: 1803.03206 | DOI

[24] C. B. C. Gomes, F. A. G. Almeida, A. M. C. Souza, “Influence of the Kerr effect in a Mott insulator on the superfluid transition from the point of view of the Jaynes–Cummings–Hubbard model”, Phys. Lett. A, 380:20 (2016), 1799–1803 | DOI

[25] M. Hohenadler, M. Aichhorn, L. Pollet, S. Schmidt, “Polariton Mott insulator with trapped ions or circuit QED”, Phys. Rev. A, 85:1 (2012), 013810, 7 pp., arXiv: 1108.5035 | DOI

[26] J. M. Raimond, M. Brune, S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity”, Rev. Modern Phys., 73:3 (2001), 565–582 | DOI | MR